Compare commits

...

22 Commits

Author SHA1 Message Date
749cc2d3e8 delete unuse file 2025-08-17 03:15:51 +08:00
399b81005a change to Hardware IIC 2025-08-17 02:44:27 +08:00
633b2583b2 add task button more 2025-08-17 02:44:06 +08:00
b24c0853c9 rewrite write 16bits 2025-08-16 15:53:47 +08:00
77a6525168 rewrite read 16bits 2025-08-16 04:06:46 +08:00
6cc7b2dae2 add task button 2025-08-16 04:05:22 +08:00
8adabcd08d fixing IIC 2025-08-15 18:51:56 +08:00
dd7549d62b fix i2c scan printf to uart data transmit 2025-08-15 00:06:33 +08:00
90486c6609 fix i2c reset bus function 2025-08-14 23:59:15 +08:00
88f79f7eb0 fix iic driver 2025-08-14 19:57:57 +08:00
4e0ad6e8eb IIC OK but sensor error 2025-08-14 00:41:12 +08:00
54bf206ec3 for debug 2025-08-14 00:13:49 +08:00
93294b0e3c add M4 test command 2025-08-14 00:07:45 +08:00
d7029d91e7 add Hardware IIC 2025-08-14 00:07:16 +08:00
cda1a2284d fix HIIC 2025-08-13 20:57:46 +08:00
d1b0b7c3ed add old HIIC/SIIC code 2025-08-13 20:44:52 +08:00
ee2a1d5c9c add test command M3 2025-08-13 20:36:32 +08:00
fe199ba443 fix function name 2025-08-13 20:34:45 +08:00
5c654d6640 fix err 2025-08-13 20:32:23 +08:00
48e832bf5b change respone function to GD32E23x_standard_peripheral lib 2025-08-13 20:16:20 +08:00
17413f4cc2 fix delay ms & delay 10us 2025-08-13 20:15:17 +08:00
0939eae851 add delay us safe 2025-08-13 13:35:53 +08:00
16 changed files with 1699 additions and 103 deletions

View File

@@ -4,6 +4,10 @@
"Git Bash": {
"path": "C:\\Program Files\\Git\\bin\\bash.exe",
"icon": "terminal-bash"
},
"Git-Bash": {
"path": "D:\\Git\\bin\\bash.exe",
"icon": "terminal-bash"
}
},
"terminal.integrated.defaultProfile.windows": "Git-Bash",

22
.vscode/tasks.json vendored
View File

@@ -11,7 +11,11 @@
"Build",
"Flash MCU"
],
"dependsOrder": "sequence"
"dependsOrder": "sequence",
"icon": {
"id": "insert",
"tooltip": "Build and Flash"
}
},
{
"label": "Flash MCU",
@@ -31,6 +35,10 @@
},
"presentation": {
"clear": true
},
"icon": {
"id": "gather",
"tooltip": "Flash MCU"
}
},
{
@@ -51,6 +59,10 @@
},
"presentation": {
"clear": true
},
"icon": {
"id": "discard",
"tooltip": "Reset MCU"
}
},
{
@@ -71,6 +83,10 @@
},
"presentation": {
"clear": true
},
"icon": {
"id": "clear-all",
"tooltip": "Erase MCU"
}
},
{
@@ -119,6 +135,10 @@
},
"presentation": {
"clear": true
},
"icon": {
"id": "code",
"tooltip": "Build"
}
}
]

View File

@@ -29,6 +29,7 @@ set(TARGET_SRC
Src/led.c
Src/uart_ring_buffer.c
Src/command.c
Src/i2c.c
)
# 设置输出目录

View File

@@ -26,6 +26,8 @@
#define I2C_SDA_PIN GPIO_PIN_0
#define I2C_GPIO_AF GPIO_AF_1
#define I2C_DEBUG_UART USART0
/******************************************************************************/
#define LED_PORT GPIOA

View File

@@ -16,6 +16,9 @@
* @{
*/
/** @brief 传感器周期上报使能标志 */
extern volatile bool g_sensor_report_enabled;
/**
* @section Command_Protocol 协议格式
* 接收命令帧格式:
@@ -75,7 +78,7 @@ bool get_sensor_report_enabled(void);
* @note 推荐通过此函数修改状态,便于后续功能扩展。
* @ingroup Command
*/
void set_sensor_report_enabled(bool enabled);
void set_sensor_report_status(bool enabled);
/**
* @brief 处理串口环形缓冲区中的命令数据。

127
Inc/i2c.h Normal file
View File

@@ -0,0 +1,127 @@
//
// Created by dell on 24-12-20.
//
#ifndef I2C_H
#define I2C_H
#include "gd32e23x_it.h"
#include "gd32e23x.h"
#include "systick.h"
#include <stdbool.h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "board_config.h"
/******************************************************************************/
#define I2C_SPEED 100000U /* 100kHz */
#define I2C_TIME_OUT 5000U /* 5000 loops timeout */
#define I2C_MAX_RETRY 3U /* Maximum retry attempts */
#define I2C_DELAY_10US 10U /* Delay in microseconds for bus reset */
#define I2C_RECOVERY_CLOCKS 9U /* Clock pulses for bus recovery */
#define I2C_MASTER_ADDRESS 0x00U /* Master address (not used) */
/* Legacy compatibility */
#define I2C_OK 1
#define I2C_FAIL 0
#define I2C_END 1
/******************************************************************************/
/* I2C result enumeration */
typedef enum {
I2C_RESULT_SUCCESS = 0, /* Operation successful */
I2C_RESULT_TIMEOUT, /* Timeout occurred */
I2C_RESULT_NACK, /* No acknowledge received */
I2C_RESULT_BUS_BUSY, /* Bus is busy */
I2C_RESULT_ERROR, /* General error */
I2C_RESULT_INVALID_PARAM, /* Invalid parameter */
I2C_RECOVERY_OK,
I2C_RECOVERY_SDA_STUCK_LOW,
I2C_RECOVERY_SCL_STUCK_LOW
} i2c_result_t;
/* I2C state machine enumeration */
typedef enum {
I2C_STATE_IDLE = 0, /* Idle state */
I2C_STATE_START, /* Generate start condition */
I2C_STATE_SEND_ADDRESS, /* Send slave address */
I2C_STATE_CLEAR_ADDRESS, /* Clear address flag */
I2C_STATE_TRANSMIT_REG, /* Transmit register address */
I2C_STATE_TRANSMIT_DATA, /* Transmit data */
I2C_STATE_RESTART, /* Generate restart condition */
I2C_STATE_RECEIVE_DATA, /* Receive data */
I2C_STATE_STOP, /* Generate stop condition */
I2C_STATE_ERROR, /* Error state */
I2C_STATE_END
} i2c_state_t;
/******************************************************************************/
/* Function declarations */
/*!
\brief configure the I2C interface
\param[in] none
\param[out] none
\retval i2c_result_t
*/
i2c_result_t i2c_config(void);
/*!
\brief reset I2C bus with proper recovery
\param[in] none
\param[out] none
\retval i2c_result_t
*/
i2c_result_t i2c_bus_reset(void);
/*!
\brief scan I2C bus for devices
\param[in] none
\param[out] none
\retval none
*/
void i2c_scan(void);
/*!
\brief write 16-bit data to I2C device
\param[in] slave_addr: 7-bit slave address
\param[in] reg_addr: register address
\param[in] data: pointer to 2-byte data array
\param[out] none
\retval i2c_result_t
*/
i2c_result_t i2c_write_16bits(uint8_t slave_addr, uint8_t reg_addr, uint8_t data[2]);
/*!
\brief read 16-bit data from I2C device
\param[in] slave_addr: 7-bit slave address
\param[in] reg_addr: register address
\param[out] data: pointer to 2-byte data buffer
\retval i2c_result_t
*/
i2c_result_t i2c_read_16bits(uint8_t slave_addr, uint8_t reg_addr, uint8_t *data);
/*!
\brief read 16-bit data from I2C device
\param[in] slave_addr: 7-bit slave address
\param[in] reg_addr: register address
\param[out] data: pointer to 2-byte data buffer
\retval i2c_result_t
*/
i2c_result_t i2c_read_16bits(uint8_t slave_addr, uint8_t reg_addr, uint8_t *data);
/*!
\brief get status string for debugging
\param[in] status: i2c_result_t value
\param[out] none
\retval const char* status string
*/
const char* i2c_get_status_string(i2c_result_t status);
#endif //I2C_H

28
Inc/sensor_example.h Normal file
View File

@@ -0,0 +1,28 @@
//
// Sensor Usage Example Header
// 传感器使用示例头文件
//
#ifndef SENSOR_EXAMPLE_H
#define SENSOR_EXAMPLE_H
#include "gd32e23x.h"
#include "board_config.h"
/*!
\brief 传感器初始化示例
\param[in] none
\param[out] none
\retval none
*/
void sensors_init_example(void);
/*!
\brief 传感器读取示例
\param[in] none
\param[out] none
\retval none
*/
void sensors_read_example(void);
#endif // SENSOR_EXAMPLE_H

52
Inc/soft_i2c.h Normal file
View File

@@ -0,0 +1,52 @@
//
// Created by dell on 24-12-28.
//
#ifndef SOFT_I2C_H
#define SOFT_I2C_H
#include "gd32e23x_it.h"
#include "gd32e23x.h"
#include "systick.h"
#include "board_config.h"
/******************************************************************************/
#define I2C_SCL_HIGH() gpio_bit_set(I2C_SCL_PORT, I2C_SCL_PIN)
#define I2C_SCL_LOW() gpio_bit_reset(I2C_SCL_PORT, I2C_SCL_PIN)
#define I2C_SDA_HIGH() gpio_bit_set(I2C_SDA_PORT, I2C_SDA_PIN)
#define I2C_SDA_LOW() gpio_bit_reset(I2C_SDA_PORT, I2C_SDA_PIN)
#define I2C_SDA_READ() gpio_input_bit_get(I2C_SDA_PORT, I2C_SDA_PIN)
/******************************************************************************/
#define SOFT_I2C_OK 1
#define SOFT_I2C_FAIL 0
#define SOFT_I2C_END 1
/******************************************************************************/
void soft_i2c_delay(void);
void soft_i2c_config(void);
void soft_i2c_start(void);
void soft_i2c_stop(void);
void soft_i2c_send_ack(void);
void soft_i2c_send_nack(void);
uint8_t soft_i2c_wait_ack(void);
void soft_i2c_send_byte(uint8_t data);
uint8_t soft_i2c_receive_byte(uint8_t ack);
uint8_t soft_i2c_write_16bits(uint8_t slave_addr, uint8_t reg_addr, uint8_t data[2]);
uint8_t soft_i2c_read_16bits(uint8_t slave_addr, uint8_t reg_addr, uint8_t *data);
#endif //SOFT_I2C_H

View File

@@ -18,13 +18,19 @@
/* configure systick */
void systick_config(void);
/* delay a time in 10 microseconds */
void delay_10us(uint32_t count);
/* delay a time in milliseconds */
void delay_ms(uint32_t count);
/* delay a time in microseconds */
void delay_us(uint32_t count);
/* decrement delay counters */
void delay_decrement(void);
/* delay function that doesn't interfere with SysTick interrupt */
void delay_ms_safe(uint32_t count);
// /* delay function that doesn't interfere with SysTick interrupt */
// void delay_ms_safe(uint32_t count);
// /* delay a time in microseconds (safe version) */
// void delay_us_safe(uint32_t count);
#endif /* SYS_TICK_H */

View File

@@ -16,6 +16,7 @@
#include <stdbool.h>
#include <stdio.h>
#include "board_config.h"
#include "gd32e23x_usart.h"
/* ============================================================================
* 协议格式说明
@@ -76,7 +77,7 @@
* ============================================================================ */
/** @brief 传感器周期上报使能标志 */
static volatile bool s_sensor_report_enabled = false;
volatile bool g_sensor_report_enabled = false;
/** @name 预设响应数据
* @{ */
@@ -95,19 +96,19 @@ static const uint8_t s_report_status_err[] = { 'e','r','r' }; /**< 错误响应
*/
bool get_sensor_report_enabled(void)
{
return s_sensor_report_enabled;
return g_sensor_report_enabled;
}
/**
* @brief 设置是否启用周期性传感器上报标志。
* @details 本模块内部保存的布尔状态,供其他逻辑决定是否进行周期性数据上报;
* 推荐通过本函数修改而非直接访问全局/静态变量,以便后续扩展(如加锁/回调)。
* @param enabled true 启用周期上报false 禁用。
* @param status true 启用周期上报false 禁用。
* @ingroup Command
*/
void set_sensor_report_enabled(bool enabled)
void set_sensor_report_status(bool status)
{
s_sensor_report_enabled = enabled;
g_sensor_report_enabled = status;
}
/**
@@ -136,14 +137,14 @@ static uint8_t command_sum_crc_calc(const uint8_t *data, uint8_t len)
}
/**
* @brief 发送协议响应帧。
* @brief 发送协议响应帧使用GD32E230标准库
* @details 构造并发送格式为 B5 TYPE LEN [payload] CRC 的响应帧,
* 自动计算CRC校验值并通过串口输出。
* @param type 响应类型码(如 RESP_TYPE_OK, RESP_TYPE_CRC_ERR 等)。
* @param payload 指向响应数据的缓冲区,可为 NULL。
* @param len 响应数据长度字节payload为NULL时填充0
* @param payload 指向响应数据的缓冲区,当len为0时可为NULL。
* @param len 响应数据长度(字节),为0时不复制payload数据
* @note 内部使用固定大小缓冲区,超长响应将被丢弃。
* @warning 通过 printf 发送,确保串口已正确初始化。
* @warning 使用GD32E230标准库函数发送,确保串口已正确初始化。
* @ingroup Command
*/
static void send_response(uint8_t type, const uint8_t *payload, uint8_t len)
@@ -155,15 +156,33 @@ static void send_response(uint8_t type, const uint8_t *payload, uint8_t len)
buf[0] = RESP_HEADER;
buf[1] = type;
buf[2] = len;
for (uint8_t i = 0; i < len; i++) buf[3 + i] = payload ? payload[i] : 0;
buf[buf_len - 1] = command_sum_crc_calc(buf, buf_len);
for (uint8_t i = 0; i < buf_len; i++) {
printf("%c", buf[i]);
// 简化逻辑只有当len > 0且payload非空时才复制数据
if (len > 0 && payload != NULL) {
for (uint8_t i = 0; i < len; i++) {
buf[3 + i] = payload[i];
}
}
// 刷新缓冲区
fflush(stdout);
buf[buf_len - 1] = command_sum_crc_calc(buf, buf_len);
// 使用GD32E230标准库函数逐字节发送标准库实现
for (uint8_t i = 0; i < buf_len; i++) {
// 等待发送缓冲区空
while (usart_flag_get(RS485_PHY, USART_FLAG_TBE) == RESET) {}
usart_data_transmit(RS485_PHY, buf[i]);
}
// 等待发送完成
while (usart_flag_get(RS485_PHY, USART_FLAG_TC) == RESET) {}
// // 使用printf发送通过重定向到串口
// for (uint8_t i = 0; i < buf_len; i++) {
// printf("%c", buf[i]);
// }
// // 刷新缓冲区
// fflush(stdout);
}
/**
@@ -215,8 +234,8 @@ static uint8_t parse_uint_dec(const uint8_t *s, uint8_t n, uint32_t *out)
* - 带参数命令M<数字>S<参数>(如 M100S123参数为十进制
*
* 支持的命令:
* - M1: 开启LED启用传感器上报
* - M2: 关闭LED禁用传感器上报
* - M1: 启用传感器上报
* - M2: 禁用传感器上报
* - M100S<value>: 设置PWM值示例
*
* @param frame 指向完整命令帧的缓冲区从包头0xD5开始
@@ -256,28 +275,425 @@ void handle_command(const uint8_t *frame, uint8_t len) {
if (cmd_index == cmd_len) {
// 仅基础命令,如 M1, M2, M3
switch (base_cmd) {
case 1u: // M1命令
set_sensor_report_enabled(true);
// led_on();
// send_response(RESP_TYPE_OK, s_report_status_ok, sizeof(s_report_status_ok));
uint8_t test_response1[] = { 0xAA, 0xBB, 0xCC, 0xDD };
send_response(RESP_TYPE_OK, test_response1, sizeof(test_response1));
case 1u: // M1: enable sensor report
set_sensor_report_status(true);
send_response(RESP_TYPE_OK, s_report_status_ok, sizeof(s_report_status_ok));
return;
case 2u: // M2命令
set_sensor_report_enabled(false);
// led_off();
// send_response(RESP_TYPE_OK, s_report_status_ok, sizeof(s_report_status_ok));
uint8_t test_response2[] = { 0xDD, 0xCC, 0xBB, 0xAA };
send_response(RESP_TYPE_OK, test_response2, sizeof(test_response2));
case 2u: // M2: disable sensor report
set_sensor_report_status(false);
send_response(RESP_TYPE_OK, s_report_status_ok, sizeof(s_report_status_ok));
return;
// 示例M3、M10、M201、M100 等(按需添加)
// case 3u: // M3命令
// send_response(RESP_TYPE_OK, s_report_status_ok, sizeof(s_report_status_ok));
// case 3u: // M3命令 - 高电流驱动测试
// /**
// * M3命令使用更高驱动电流测试线圈响应
// * 响应格式6字节状态信息
// *
// * 响应数据解析:
// * [0-1]: 传感器状态寄存器(大端序)
// * bit[15-8]: 预留
// * bit[7]: DRDY_1 - 通道1数据就绪
// * bit[6]: DRDY_0 - 通道0数据就绪
// * bit[5]: UNREAD_CONV - 未读转换结果
// * bit[4]: ERR_ZC - 零计数错误
// * bit[3]: ERR_AE - 幅度错误(重点关注)
// * bit[2]: ERR_WD - 看门狗超时
// * bit[1]: ERR_OR - 过量程错误
// * bit[0]: ERR_UR - 欠量程错误
// * [2]: 数据就绪标志 (0x01=就绪, 0x00=未就绪)
// * [3]: 0xA0 - 高电流测试标记
// * [4]: 幅度错误专用标志 (0xAE=有幅度错误, 0x00=无)
// * [5]: 0x33 - M3命令标记
// *
// * 分析要点:
// * - 如果[0-1]从0x0008变为其他值说明高电流有效果
// * - 如果[2]变为0x01说明数据开始就绪
// * - 如果[4]变为0x00说明幅度错误消失
// */
// // 重置传感器
// ldc1612_reset_sensor();
// delay_ms(50);
// // 使用更高的驱动电流重新配置
// // ldc1612_write_register(SET_DRIVER_CURRENT_REG, 0xA000);
// delay_ms(10);
// // 重新配置其他参数
// ldc1612_config_single_channel(CHANNEL_0);
// delay_ms(200); // 更长稳定时间
// // 检查结果
// uint16_t status_m3 = ldc1612_get_sensor_status();
// bool ready_m3 = ldc1612_is_data_ready(CHANNEL_0);
// uint8_t m3_info[6];
// m3_info[0] = (uint8_t)(status_m3 >> 8);
// m3_info[1] = (uint8_t)(status_m3 & 0xFF);
// m3_info[2] = ready_m3 ? 0x01 : 0x00;
// m3_info[3] = 0xA0; // 高电流标记
// m3_info[4] = (status_m3 & 0x0008) ? 0xAE : 0x00; // 幅度错误标志
// m3_info[5] = 0x33; // M3命令标记
// send_response(RESP_TYPE_OK, m3_info, sizeof(m3_info));
// return;
// case 10u: // M10命令
// send_response(RESP_TYPE_OK, s_report_status_ok, sizeof(s_report_status_ok));
// case 4u: // M4命令 - 寄存器诊断
// /**
// * M4命令读取关键寄存器进行配置诊断
// * 响应格式8字节寄存器信息
// *
// * 响应数据解析:
// * [0-1]: 状态寄存器 (0x18) - 当前传感器状态
// * [2-3]: 传感器配置寄存器 (0x1A) - 传感器工作模式
// * 期望值: 0x1601 (活动模式,单通道)
// * [4-5]: 驱动电流寄存器 (0x1E) - 当前驱动电流设置
// * 常见值: 0x9000(默认), 0xA000(高), 0xF800(最高)
// * [6]: I2C读取状态 (0x4F='O'=成功, 0xEE=失败)
// * [7]: 0x44 - M4命令标记
// *
// * 分析要点:
// * - [2-3]应该是0x1601如果不是说明配置异常
// * - [4-5]显示实际的驱动电流设置
// * - [6]必须是0x4F否则I2C通信有问题
// */
// // 简化版本只读取最关键的寄存器避免I2C超时
// uint16_t status_reg = ldc1612_get_sensor_status(); // 0x18
// // 逐一安全读取关键寄存器
// uint8_t data_buf[2] = {0};
// uint16_t sensor_config = 0;
// uint16_t drive_current = 0;
// // 尝试读取传感器配置寄存器
// bool result1_ok = (LDC1612_IIC_READ_16BITS(LDC1612_ADDR, SENSOR_CONFIG_REG, data_buf) == I2C_RESULT_SUCCESS);
// if (result1_ok) {
// sensor_config = (data_buf[0] << 8) | data_buf[1];
// }
// // 尝试读取驱动电流寄存器
// bool result2_ok = (LDC1612_IIC_READ_16BITS(LDC1612_ADDR, SET_DRIVER_CURRENT_REG, data_buf) == I2C_RESULT_SUCCESS);
// if (result2_ok) {
// drive_current = (data_buf[0] << 8) | data_buf[1];
// }
// // 构造8字节简化诊断信息
// uint8_t diag_info[8];
// diag_info[0] = (uint8_t)(status_reg >> 8); // 状态寄存器高位
// diag_info[1] = (uint8_t)(status_reg & 0xFF); // 状态寄存器低位
// diag_info[2] = (uint8_t)(sensor_config >> 8); // 传感器配置寄存器高位
// diag_info[3] = (uint8_t)(sensor_config & 0xFF); // 传感器配置寄存器低位
// diag_info[4] = (uint8_t)(drive_current >> 8); // 驱动电流寄存器高位
// diag_info[5] = (uint8_t)(drive_current & 0xFF); // 驱动电流寄存器低位
// diag_info[6] = (result1_ok && result2_ok) ? 0x4F : 0xEE; // I2C状态
// diag_info[7] = 0x44; // M4命令标记
// send_response(RESP_TYPE_OK, diag_info, sizeof(diag_info));
// return;
// case 5u: // M5命令 - 最高电流启动测试
// // 命令: D5 03 02 4D 35 87
// // 响应: B5 F0 08 [状态2字节][就绪标志][电流设置2字节][幅度错误标志][M5标记][最高电流标记] CRC
// // 响应格式:
// // [0-1]: 传感器状态寄存器(启动后状态)
// // [2]: 数据就绪标志 (0x01=就绪, 0x00=未就绪)
// // [3-4]: 实际驱动电流设置值应该是0xF800
// // [5]: 幅度错误专用标志 (0xAE=仍有错误, 0x00=错误消失)
// // [6]: 0x55 - M5命令标记
// // [7]: 0xF8 - 最高电流标记
// // 重置传感器
// ldc1612_reset_sensor();
// delay_ms(100);
// // 使用最高驱动电流并固定配置
// // ldc1612_write_register(SET_DRIVER_CURRENT_REG, 0xF800);
// delay_ms(10);
// // 手动配置其他必要寄存器,避免被覆盖
// // 配置频率分频器为较低频率 (更容易起振)
// uint8_t freq_data[2] = {0x10, 0x00}; // 较低分频
// LDC1612_IIC_WRITE_16BITS(LDC1612_ADDR, SET_FREQ_REG_START + CHANNEL_0, freq_data);
// delay_ms(10);
// // 设置较长的LC稳定时间
// uint8_t lc_data[2] = {0x04, 0x00}; // 更长稳定时间
// LDC1612_IIC_WRITE_16BITS(LDC1612_ADDR, SET_LC_STABILIZE_REG_START + CHANNEL_0, lc_data);
// delay_ms(10);
// // 配置MUX为单通道模式
// // ldc1612_configure_mux_register(0, CHANNEL_0, LDC1612_MUX_RR_SEQUENCE_1, LDC1612_MUX_FILTER_1MHz);
// delay_ms(10);
// // 启动传感器
// uint8_t sensor_cfg_data[2] = {0x16, 0x01}; // 活动模式,单通道
// LDC1612_IIC_WRITE_16BITS(LDC1612_ADDR, SENSOR_CONFIG_REG, sensor_cfg_data);
// delay_ms(200); // 更长稳定时间
// // 读取结果
// uint16_t status_m5 = ldc1612_get_sensor_status();
// bool ready_m5 = ldc1612_is_data_ready(CHANNEL_0);
// // 再次确认驱动电流设置
// uint8_t curr_data[2];
// LDC1612_IIC_READ_16BITS(LDC1612_ADDR, SET_DRIVER_CURRENT_REG, curr_data);
// uint16_t actual_current = (curr_data[0] << 8) | curr_data[1];
// uint8_t m5_info[8];
// m5_info[0] = (uint8_t)(status_m5 >> 8);
// m5_info[1] = (uint8_t)(status_m5 & 0xFF);
// m5_info[2] = ready_m5 ? 0x01 : 0x00;
// m5_info[3] = (uint8_t)(actual_current >> 8); // 实际电流设置高位
// m5_info[4] = (uint8_t)(actual_current & 0xFF); // 实际电流设置低位
// m5_info[5] = (status_m5 & 0x0008) ? 0xAE : 0x00; // 幅度错误标志
// m5_info[6] = 0x55; // M5命令标记
// m5_info[7] = 0xF8; // 最高电流标记
// send_response(RESP_TYPE_OK, m5_info, sizeof(m5_info));
// return;
// case 6u: // M6命令 - 芯片功能验证
// // 命令: D5 03 02 4D 36 88
// // 响应: B5 F0 0C [写入值2字节][读取值2字节][制造商ID2字节][设备ID2字节][状态2字节][ID读取状态][M6标记] CRC
// // 响应格式:
// // [0-1]: 写入测试值 (0x9000)
// // [2-3]: 读取回的值
// // [4-5]: 制造商ID (应该是0x5449="TI")
// // [6-7]: 设备ID (应该是0x3055)
// // [8-9]: 当前状态寄存器
// // [10]: ID读取状态 (0x4F=成功, 0xEE=失败)
// // [11]: 0x66 - M6命令标记
// // 测试1: 写入和读取特定值到驱动电流寄存器
// uint8_t test_current_data[2] = {0x90, 0x00}; // 写入0x9000
// LDC1612_IIC_WRITE_16BITS(LDC1612_ADDR, SET_DRIVER_CURRENT_REG, test_current_data);
// delay_ms(10);
// // 读取验证
// uint8_t read_current_data[2];
// LDC1612_IIC_READ_16BITS(LDC1612_ADDR, SET_DRIVER_CURRENT_REG, read_current_data);
// uint16_t read_current = (read_current_data[0] << 8) | read_current_data[1];
// // 测试2: 读取制造商ID和设备ID
// uint8_t manufacturer_data[2];
// uint8_t device_data[2];
// bool id_read_ok = true;
// if (LDC1612_IIC_READ_16BITS(LDC1612_ADDR, 0x7E, manufacturer_data) != I2C_RESULT_SUCCESS) {
// id_read_ok = false;
// }
// if (LDC1612_IIC_READ_16BITS(LDC1612_ADDR, 0x7F, device_data) != I2C_RESULT_SUCCESS) {
// id_read_ok = false;
// }
// uint16_t manufacturer_id = id_read_ok ? ((manufacturer_data[0] << 8) | manufacturer_data[1]) : 0x0000;
// uint16_t device_id = id_read_ok ? ((device_data[0] << 8) | device_data[1]) : 0x0000;
// // 测试3: 检查当前状态
// uint16_t current_status = ldc1612_get_sensor_status();
// // 构造12字节测试结果
// uint8_t test_info[12];
// test_info[0] = 0x90; // 写入的值高位
// test_info[1] = 0x00; // 写入的值低位
// test_info[2] = (uint8_t)(read_current >> 8); // 读取的值高位
// test_info[3] = (uint8_t)(read_current & 0xFF); // 读取的值低位
// test_info[4] = (uint8_t)(manufacturer_id >> 8);
// test_info[5] = (uint8_t)(manufacturer_id & 0xFF);
// test_info[6] = (uint8_t)(device_id >> 8);
// test_info[7] = (uint8_t)(device_id & 0xFF);
// test_info[8] = (uint8_t)(current_status >> 8);
// test_info[9] = (uint8_t)(current_status & 0xFF);
// test_info[10] = id_read_ok ? 0x4F : 0xEE; // ID读取状态
// test_info[11] = 0x66; // M6命令标记
// send_response(RESP_TYPE_OK, test_info, sizeof(test_info));
// return;
// case 7u: // M7命令 - 保守参数测试
// // 命令: D5 03 02 4D 37 89
// // 响应: B5 F0 0A [状态2字节][就绪标志][频率设置2字节][幅度错误标志][欠量程错误标志][过量程错误标志][M7标记][低频标记] CRC
// // 响应格式:
// // [0-1]: 状态寄存器
// // [2]: 数据就绪标志
// // [3-4]: 实际频率分频器设置 (0x2000=较低频率)
// // [5]: 幅度错误标志 (0xAE=有错误, 0x00=无)
// // [6]: 欠量程错误标志 (0x01=有, 0x00=无)
// // [7]: 过量程错误标志 (0x02=有, 0x00=无)
// // [8]: 0x77 - M7命令标记
// // [9]: 0x20 - 低频标记
// // 重置传感器
// ldc1612_reset_sensor();
// delay_ms(100);
// // 使用保守的配置尝试启动线圈
// // 1. 设置最高驱动电流
// uint8_t drive_data[2] = {0xF8, 0x00}; // 最高电流
// LDC1612_IIC_WRITE_16BITS(LDC1612_ADDR, SET_DRIVER_CURRENT_REG, drive_data);
// delay_ms(10);
// // 2. 设置较低的频率分频器(适合更大电感值)
// uint8_t freq_low_data[2] = {0x20, 0x00}; // 更低频率
// LDC1612_IIC_WRITE_16BITS(LDC1612_ADDR, SET_FREQ_REG_START + CHANNEL_0, freq_low_data);
// delay_ms(10);
// // 3. 设置更长的LC稳定时间
// uint8_t lc_stable_data[2] = {0x08, 0x00}; // 更长稳定时间
// LDC1612_IIC_WRITE_16BITS(LDC1612_ADDR, SET_LC_STABILIZE_REG_START + CHANNEL_0, lc_stable_data);
// delay_ms(10);
// // 4. 设置更长的转换时间
// uint8_t conv_time_data[2] = {0x04, 0x00}; // 更长转换时间
// LDC1612_IIC_WRITE_16BITS(LDC1612_ADDR, SET_CONVERSION_TIME_REG_START + CHANNEL_0, conv_time_data);
// delay_ms(10);
// // 5. 设置转换偏移
// uint8_t conv_offset_data[2] = {0x00, 0x00};
// LDC1612_IIC_WRITE_16BITS(LDC1612_ADDR, SET_CONVERSION_OFFSET_REG_START + CHANNEL_0, conv_offset_data);
// delay_ms(10);
// // 6. 配置错误寄存器 - 降低错误敏感度
// uint8_t error_config_data[2] = {0x00, 0x00}; // 允许所有错误
// LDC1612_IIC_WRITE_16BITS(LDC1612_ADDR, ERROR_CONFIG_REG, error_config_data);
// delay_ms(10);
// // 7. 配置MUX寄存器
// // ldc1612_configure_mux_register(0, CHANNEL_0, LDC1612_MUX_RR_SEQUENCE_1, LDC1612_MUX_FILTER_1MHz);
// delay_ms(10);
// // 8. 启动传感器
// uint8_t sensor_start_data[2] = {0x16, 0x01}; // 活动模式
// LDC1612_IIC_WRITE_16BITS(LDC1612_ADDR, SENSOR_CONFIG_REG, sensor_start_data);
// delay_ms(500); // 给予充分时间稳定
// // 检查结果
// uint16_t status_m7 = ldc1612_get_sensor_status();
// bool ready_m7 = ldc1612_is_data_ready(CHANNEL_0);
// // 读取实际配置的频率分频器确认
// uint8_t freq_readback[2];
// LDC1612_IIC_READ_16BITS(LDC1612_ADDR, SET_FREQ_REG_START + CHANNEL_0, freq_readback);
// uint16_t freq_actual = (freq_readback[0] << 8) | freq_readback[1];
// uint8_t m7_info[10];
// m7_info[0] = (uint8_t)(status_m7 >> 8);
// m7_info[1] = (uint8_t)(status_m7 & 0xFF);
// m7_info[2] = ready_m7 ? 0x01 : 0x00;
// m7_info[3] = (uint8_t)(freq_actual >> 8); // 实际频率分频器
// m7_info[4] = (uint8_t)(freq_actual & 0xFF);
// m7_info[5] = (status_m7 & 0x0008) ? 0xAE : 0x00; // 幅度错误
// m7_info[6] = (status_m7 & 0x0001) ? 0x01 : 0x00; // 欠量程错误
// m7_info[7] = (status_m7 & 0x0002) ? 0x02 : 0x00; // 过量程错误
// m7_info[8] = 0x77; // M7命令标记
// m7_info[9] = 0x20; // 低频标记
// send_response(RESP_TYPE_OK, m7_info, sizeof(m7_info));
// return;
// case 8u: // M8命令 - 极端参数测试
// // 命令: D5 03 02 4D 38 8A
// // 响应: B5 F0 06 [状态2字节][就绪标志][幅度错误标志][M8标记][极端测试标记] CRC
// // 响应格式:
// // [0-1]: 传感器状态寄存器
// // [2]: 数据就绪标志 (0x01=就绪, 0x00=未就绪)
// // [3]: 幅度错误标志 (0xAE=仍有错误, 0x00=错误消失)
// // [4]: 0x88 - M8命令标记
// // [5]: 0xEE - 极端测试标记
// {
// // 重置传感器
// ldc1612_reset_sensor();
// delay_ms(100);
// // 极端配置1: 极低频率
// uint8_t extreme_freq[2] = {0x40, 0x00};
// LDC1612_IIC_WRITE_16BITS(LDC1612_ADDR, SET_FREQ_REG_START + CHANNEL_0, extreme_freq);
// delay_ms(10);
// // 极端配置2: 最大驱动电流
// uint8_t max_drive[2] = {0xFF, 0x00};
// LDC1612_IIC_WRITE_16BITS(LDC1612_ADDR, SET_DRIVER_CURRENT_REG, max_drive);
// delay_ms(10);
// // 极端配置3: 禁用错误检测
// uint8_t no_errors[2] = {0x00, 0x00};
// LDC1612_IIC_WRITE_16BITS(LDC1612_ADDR, ERROR_CONFIG_REG, no_errors);
// delay_ms(10);
// // 启动传感器
// uint8_t start_data[2] = {0x16, 0x01};
// LDC1612_IIC_WRITE_16BITS(LDC1612_ADDR, SENSOR_CONFIG_REG, start_data);
// delay_ms(1000); // 等待1秒
// // 读取状态
// uint16_t status_8 = ldc1612_get_sensor_status();
// bool ready_8 = ldc1612_is_data_ready(CHANNEL_0);
// uint8_t m8_result[6];
// m8_result[0] = (uint8_t)(status_8 >> 8);
// m8_result[1] = (uint8_t)(status_8 & 0xFF);
// m8_result[2] = ready_8 ? 0x01 : 0x00;
// m8_result[3] = (status_8 & 0x0008) ? 0xAE : 0x00; // 幅度错误
// m8_result[4] = 0x88; // M8标记
// m8_result[5] = 0xEE; // 极端测试标记
// send_response(RESP_TYPE_OK, m8_result, sizeof(m8_result));
// return;
// }
// case 9u: // M9命令 - 多频率特性测试
// // 命令: D5 03 02 4D 39 8B
// // 响应: B5 F0 08 [高频状态2字节][高频就绪标志][低频状态2字节][低频就绪标志][M9标记][多频测试标记] CRC
// // 响应格式:
// // [0-1]: 高频测试状态
// // [2]: 高频就绪标志 (0x01=就绪, 0x00=未就绪)
// // [3-4]: 低频测试状态
// // [5]: 低频就绪标志 (0x01=就绪, 0x00=未就绪)
// // [6]: 0x99 - M9命令标记
// // [7]: 0xAA - 多频测试标记
// {
// // 测试1: 高频配置
// ldc1612_reset_sensor();
// delay_ms(50);
// uint8_t high_freq[2] = {0x04, 0x00}; // 高频
// uint8_t low_drive[2] = {0x80, 0x00}; // 低电流
// LDC1612_IIC_WRITE_16BITS(LDC1612_ADDR, SET_FREQ_REG_START + CHANNEL_0, high_freq);
// LDC1612_IIC_WRITE_16BITS(LDC1612_ADDR, SET_DRIVER_CURRENT_REG, low_drive);
// delay_ms(10);
// // 启动高频测试
// uint8_t start_hf[2] = {0x16, 0x01};
// LDC1612_IIC_WRITE_16BITS(LDC1612_ADDR, SENSOR_CONFIG_REG, start_hf);
// delay_ms(200);
// uint16_t hf_status = ldc1612_get_sensor_status();
// bool hf_ready = ldc1612_is_data_ready(CHANNEL_0);
// // 测试2: 低频配置
// uint8_t sleep_mode[2] = {0x20, 0x01};
// LDC1612_IIC_WRITE_16BITS(LDC1612_ADDR, SENSOR_CONFIG_REG, sleep_mode);
// delay_ms(50);
// uint8_t low_freq[2] = {0x20, 0x00}; // 低频
// uint8_t high_drive[2] = {0xC0, 0x00}; // 高电流
// LDC1612_IIC_WRITE_16BITS(LDC1612_ADDR, SET_FREQ_REG_START + CHANNEL_0, low_freq);
// LDC1612_IIC_WRITE_16BITS(LDC1612_ADDR, SET_DRIVER_CURRENT_REG, high_drive);
// delay_ms(10);
// // 启动低频测试
// LDC1612_IIC_WRITE_16BITS(LDC1612_ADDR, SENSOR_CONFIG_REG, start_hf);
// delay_ms(200);
// uint16_t lf_status = ldc1612_get_sensor_status();
// bool lf_ready = ldc1612_is_data_ready(CHANNEL_0);
// uint8_t m9_result[8];
// m9_result[0] = (uint8_t)(hf_status >> 8); // 高频状态
// m9_result[1] = (uint8_t)(hf_status & 0xFF);
// m9_result[2] = hf_ready ? 0x01 : 0x00; // 高频就绪
// m9_result[3] = (uint8_t)(lf_status >> 8); // 低频状态
// m9_result[4] = (uint8_t)(lf_status & 0xFF);
// m9_result[5] = lf_ready ? 0x01 : 0x00; // 低频就绪
// m9_result[6] = 0x99; // M9标记
// m9_result[7] = 0xAA; // 多频测试标记
// send_response(RESP_TYPE_OK, m9_result, sizeof(m9_result));
// return;
// }
// case 201u: // M201命令
// send_response(RESP_TYPE_OK, s_report_status_ok, sizeof(s_report_status_ok));
// return;

View File

@@ -98,6 +98,7 @@ void PendSV_Handler(void)
*/
void SysTick_Handler(void) {
led_heart_beat(); // LED心跳指示灯
delay_decrement();
}
void USART0_IRQHandler(void) {

677
Src/i2c.c Normal file
View File

@@ -0,0 +1,677 @@
//
// Created by dell on 24-12-20.
//
#include "i2c.h"
/*!
\brief configure the GPIO ports
\param[in] none
\param[out] none
\retval none
*/
void i2c_gpio_config(void) {
/* enable IIC GPIO clock */
rcu_periph_clock_enable(RCU_GPIO_I2C);
/* connect I2C_SCL_PIN to I2C_SCL */
gpio_af_set(I2C_SCL_PORT, I2C_GPIO_AF, I2C_SCL_PIN);
/* connect I2C_SDA_PIN to I2C_SDA */
gpio_af_set(I2C_SDA_PORT, I2C_GPIO_AF, I2C_SDA_PIN);
/* configure GPIO pins of I2C */
gpio_mode_set(I2C_SCL_PORT, GPIO_MODE_AF, GPIO_PUPD_PULLUP, I2C_SCL_PIN);
gpio_output_options_set(I2C_SCL_PORT, GPIO_OTYPE_OD, GPIO_OSPEED_50MHZ, I2C_SCL_PIN);
gpio_mode_set(I2C_SDA_PORT, GPIO_MODE_AF, GPIO_PUPD_PULLUP, I2C_SDA_PIN);
gpio_output_options_set(I2C_SDA_PORT, GPIO_OTYPE_OD, GPIO_OSPEED_50MHZ, I2C_SDA_PIN);
}
/*!
\brief configure the I2CX interface
\param[in] none
\param[out] none
\retval none
*/
i2c_result_t i2c_config(void) {
/* configure I2C GPIO */
i2c_gpio_config();
/* enable I2C clock */
rcu_periph_clock_enable(RCU_I2C);
/* configure I2C clock */
i2c_clock_config(I2C0, I2C_SPEED, I2C_DTCY_2);
/* configure I2C address */
i2c_mode_addr_config(I2C0, I2C_I2CMODE_ENABLE, I2C_ADDFORMAT_7BITS, 0xA0);
/* enable I2CX */
i2c_enable(I2C0);
/* enable acknowledge */
i2c_ack_config(I2C0, I2C_ACK_ENABLE);
return I2C_RESULT_SUCCESS;
}
/* wait for SCL to go high, return true if successful, false if timeout */
static bool i2c_wait_scl_high(uint16_t max_wait_time) {
while (max_wait_time--) {
if (gpio_input_bit_get(I2C_SCL_PORT, I2C_SCL_PIN)) {
return true;
}
delay_10us(1);
}
return false;
}
/* generate one manual SCL pulse; return true if SCL observed high (no stuck/overstretch) */
static bool i2c_generate_scl_pulse(void) {
GPIO_BC(I2C_SCL_PORT) = I2C_SCL_PIN; /* drive SCL low */
delay_10us(1);
GPIO_BOP(I2C_SCL_PORT) = I2C_SCL_PIN; /* release SCL (open-drain -> high via pull-up) */
return i2c_wait_scl_high(200); /* wait up to ~2ms for clock stretching release */
}
/*!
\brief reset I2C bus
\param[in] none
\param[out] none
\retval none
*/
i2c_result_t i2c_bus_reset(void) {
/* 1. Disable & deinit peripheral so pins can be fully controlled */
i2c_disable(I2C0);
i2c_deinit(I2C0);
#ifdef DEBUG_VERBOSE
printf("I2C bus reset\r\n");
#endif
/* 2. Configure SCL/SDA as GPIO open-drain outputs with pull-up and release them */
gpio_mode_set(I2C_SCL_PORT, GPIO_MODE_OUTPUT, GPIO_PUPD_PULLUP, I2C_SCL_PIN);
gpio_mode_set(I2C_SDA_PORT, GPIO_MODE_OUTPUT, GPIO_PUPD_PULLUP, I2C_SDA_PIN);
gpio_output_options_set(I2C_SCL_PORT, GPIO_OTYPE_OD, GPIO_OSPEED_50MHZ, I2C_SCL_PIN);
gpio_output_options_set(I2C_SDA_PORT, GPIO_OTYPE_OD, GPIO_OSPEED_50MHZ, I2C_SDA_PIN);
gpio_bit_set(I2C_SCL_PORT, I2C_SCL_PIN); /* release SCL */
gpio_bit_set(I2C_SDA_PORT, I2C_SDA_PIN); /* release SDA */
#ifdef DEBUG_VERBOSE
printf("I2C bus reset: SCL = %d, SDA = %d\r\n", gpio_input_bit_get(I2C_SCL_PORT, I2C_SCL_PIN), gpio_input_bit_get(I2C_SDA_PORT, I2C_SDA_PIN));
#endif
/* 3. Double sample to confirm bus state */
delay_10us(1);
bool scl_value1 = gpio_input_bit_get(I2C_SCL_PORT, I2C_SCL_PIN);
bool sda_value1 = gpio_input_bit_get(I2C_SDA_PORT, I2C_SDA_PIN);
delay_10us(1);
bool scl_value2 = gpio_input_bit_get(I2C_SCL_PORT, I2C_SCL_PIN);
bool sda_value2 = gpio_input_bit_get(I2C_SDA_PORT, I2C_SDA_PIN);
/* 4. If SCL low -> stuck (cannot proceed) */
if (!scl_value2) {
#ifdef DEBUG_VERBOSE
printf("I2C bus reset: SCL stuck low\r\n");
#endif
return I2C_RECOVERY_SCL_STUCK_LOW;
}
/* 5. Fast path: bus idle */
if (scl_value1 && sda_value1 && scl_value2 && sda_value2) {
i2c_config();
#ifdef DEBUG_VERBOSE
printf("I2C bus reset: bus idle\r\n");
#endif
return I2C_RECOVERY_OK;
}
/* 6. SDA low: attempt to free by generating up to I2C_RECOVERY_CLOCKS pulses */
if (scl_value2 && !sda_value2) {
bool sda_released = false;
#ifdef DEBUG_VERBOSE
printf("I2C bus reset: SCL will try to free SDA\r\n");
#endif
for (uint8_t i = 0; i < I2C_RECOVERY_CLOCKS && !sda_released; i++) {
if (!i2c_generate_scl_pulse()) {
return I2C_RECOVERY_SCL_STUCK_LOW; /* SCL failed to go high */
}
if (gpio_input_bit_get(I2C_SDA_PORT, I2C_SDA_PIN)) {
sda_released = true;
}
}
if (!sda_released) {
return I2C_RECOVERY_SDA_STUCK_LOW;
}
/* 7. Generate a STOP condition to leave bus in idle state */
#ifdef DEBUG_VERBOSE
printf("I2C bus reset: generating STOP condition\r\n");
#endif
gpio_bit_reset(I2C_SDA_PORT, I2C_SDA_PIN); /* SDA low */
delay_10us(1);
gpio_bit_set(I2C_SCL_PORT, I2C_SCL_PIN); /* ensure SCL high */
delay_10us(1);
gpio_bit_set(I2C_SDA_PORT, I2C_SDA_PIN); /* SDA rising while SCL high -> STOP */
delay_10us(1);
}
#ifdef DEBUG_VERBOSE
printf("I2C bus reset: bus recovered\r\n");
#endif
/* 8. Reconfigure & enable peripheral */
i2c_config();
return I2C_RECOVERY_OK;
}
/**
* @brief 扫描I2C总线查找连接的设备
*
* 该函数会扫描I2C总线上的所有地址1到126并尝试与每个地址进行通信。
* 如果在某个地址上发现了设备,则会打印出该设备的地址。
* 最后会打印出找到的设备总数。
*/
void i2c_scan(void) {
uint32_t timeout;
uint8_t address;
int found_devices = 0;
// printf("Scanning I2C bus...\r\n");
const char* msg1 = "Scanning I2C bus...\r\n";
for (uint8_t i = 0; msg1[i] != '\0'; i++) {
while (usart_flag_get(I2C_DEBUG_UART, USART_FLAG_TBE) == RESET) {}
usart_data_transmit(I2C_DEBUG_UART, msg1[i]);
}
while (usart_flag_get(I2C_DEBUG_UART, USART_FLAG_TC) == RESET) {}
for (address = 1; address < 127; address++) {
timeout = 0;
// 生成起始条件
while (i2c_flag_get(I2C0, I2C_FLAG_I2CBSY) && (timeout < I2C_TIME_OUT))
timeout++;
if (timeout >= I2C_TIME_OUT) {
continue; // 超时,跳过该地址
}
i2c_start_on_bus(I2C0);
timeout = 0;
// 等待起始条件发送完成
while (!i2c_flag_get(I2C0, I2C_FLAG_SBSEND) && (timeout < I2C_TIME_OUT))
timeout++;
if (timeout >= I2C_TIME_OUT) {
continue; // 超时,跳过该地址
}
i2c_master_addressing(I2C0, (address << 1), I2C_TRANSMITTER);
timeout = 0;
// 等待地址发送完成
while (!i2c_flag_get(I2C0, I2C_FLAG_ADDSEND) && (timeout < I2C_TIME_OUT))
timeout++;
if (timeout < I2C_TIME_OUT) {
i2c_flag_clear(I2C0, I2C_FLAG_ADDSEND);
// printf("Found device at 0x%02X\r\n", address);
const char* msg2_prefix = "Found device at 0x";
for (uint8_t i = 0; msg2_prefix[i] != '\0'; i++) {
while (usart_flag_get(I2C_DEBUG_UART, USART_FLAG_TBE) == RESET) {}
usart_data_transmit(I2C_DEBUG_UART, msg2_prefix[i]);
}
// 发送地址的十六进制表示
uint8_t hex_chars[] = "0123456789ABCDEF";
while (usart_flag_get(I2C_DEBUG_UART, USART_FLAG_TBE) == RESET) {}
usart_data_transmit(I2C_DEBUG_UART, hex_chars[(address >> 4) & 0x0F]);
while (usart_flag_get(I2C_DEBUG_UART, USART_FLAG_TBE) == RESET) {}
usart_data_transmit(I2C_DEBUG_UART, hex_chars[address & 0x0F]);
const char* msg2_suffix = "\r\n";
for (uint8_t i = 0; msg2_suffix[i] != '\0'; i++) {
while (usart_flag_get(I2C_DEBUG_UART, USART_FLAG_TBE) == RESET) {}
usart_data_transmit(I2C_DEBUG_UART, msg2_suffix[i]);
}
while (usart_flag_get(I2C_DEBUG_UART, USART_FLAG_TC) == RESET) {}
found_devices++;
}
// 生成停止条件
i2c_stop_on_bus(I2C0);
timeout = 0;
while (i2c_flag_get(I2C0, I2C_FLAG_STPDET) && (timeout < I2C_TIME_OUT))
timeout++;
}
if (found_devices == 0) {
// printf("No I2C devices found.\r\n");
const char* msg3 = "No I2C devices found.\r\n";
for (uint8_t i = 0; msg3[i] != '\0'; i++) {
while (usart_flag_get(I2C_DEBUG_UART, USART_FLAG_TBE) == RESET) {}
usart_data_transmit(I2C_DEBUG_UART, msg3[i]);
}
while (usart_flag_get(I2C_DEBUG_UART, USART_FLAG_TC) == RESET) {}
} else {
// printf("Total %d I2C devices found.\r\n", found_devices);
const char* msg4_prefix = "Total ";
for (uint8_t i = 0; msg4_prefix[i] != '\0'; i++) {
while (usart_flag_get(I2C_DEBUG_UART, USART_FLAG_TBE) == RESET) {}
usart_data_transmit(I2C_DEBUG_UART, msg4_prefix[i]);
}
// 发送设备数量
if (found_devices >= 10) {
while (usart_flag_get(I2C_DEBUG_UART, USART_FLAG_TBE) == RESET) {}
usart_data_transmit(I2C_DEBUG_UART, '0' + (found_devices / 10));
}
while (usart_flag_get(I2C_DEBUG_UART, USART_FLAG_TBE) == RESET) {}
usart_data_transmit(I2C_DEBUG_UART, '0' + (found_devices % 10));
const char* msg4_suffix = " I2C devices found.\r\n";
for (uint8_t i = 0; msg4_suffix[i] != '\0'; i++) {
while (usart_flag_get(I2C_DEBUG_UART, USART_FLAG_TBE) == RESET) {}
usart_data_transmit(I2C_DEBUG_UART, msg4_suffix[i]);
}
while (usart_flag_get(I2C_DEBUG_UART, USART_FLAG_TC) == RESET) {}
}
}
i2c_result_t i2c_write_16bits(uint8_t slave_addr, uint8_t reg_addr, uint8_t data[2]) {
i2c_state_t state = I2C_STATE_START;
uint16_t timeout = 0;
uint8_t retry_count = 0;
/* parameter validation */
if (data == NULL || slave_addr > 0x7F) {
return I2C_RESULT_INVALID_PARAM;
}
while (retry_count < I2C_MAX_RETRY) {
switch (state) {
case I2C_STATE_START:
timeout = 0;
/* wait for bus to be idle */
while (i2c_flag_get(I2C0, I2C_FLAG_I2CBSY) && (timeout < I2C_TIME_OUT)) {
timeout++;
}
if (timeout >= I2C_TIME_OUT) {
state = I2C_STATE_ERROR;
break;
}
i2c_start_on_bus(I2C0);
timeout = 0;
state = I2C_STATE_SEND_ADDRESS;
break;
case I2C_STATE_SEND_ADDRESS:
/* wait for start condition to be sent. SBSEND flag */
while((!i2c_flag_get(I2C0, I2C_FLAG_SBSEND)) && (timeout < I2C_TIME_OUT)) {
timeout++;
}
if (timeout >= I2C_TIME_OUT) {
state = I2C_STATE_ERROR;
break;
}
/* send slave address */
i2c_master_addressing(I2C0, slave_addr << 1, I2C_TRANSMITTER);
timeout = 0;
state = I2C_STATE_CLEAR_ADDRESS;
break;
case I2C_STATE_CLEAR_ADDRESS:
/* wait for address to be acknowledged.ADDSEND set means i2c slave sends ACK */
while ((!i2c_flag_get(I2C0, I2C_FLAG_ADDSEND)) && (!i2c_flag_get(I2C0, I2C_FLAG_AERR)) && (timeout < I2C_TIME_OUT)) {
timeout++;
}
if (timeout >= I2C_TIME_OUT) {
state = I2C_STATE_ERROR;
break;
} else if (i2c_flag_get(I2C0, I2C_FLAG_ADDSEND))
{
i2c_flag_clear(I2C0, I2C_FLAG_ADDSEND);
timeout =0;
state = I2C_STATE_TRANSMIT_REG;
break;
} else {
i2c_flag_clear(I2C0, I2C_FLAG_AERR);
timeout =0;
#ifdef DEBUG_VERBOES
printf("IIC write failed for Error Slave Address. \n");
#endif
return I2C_RESULT_NACK;
}
case I2C_STATE_TRANSMIT_REG:
/* wait until the transmit data buffer is empty */
while ((!i2c_flag_get(I2C0, I2C_FLAG_TBE)) && (timeout < I2C_TIME_OUT)) {
timeout++;
}
if (timeout >= I2C_TIME_OUT) {
state = I2C_STATE_ERROR;
break;
}
/* send register address */
i2c_data_transmit(I2C0, reg_addr);
timeout = 0;
state = I2C_STATE_TRANSMIT_DATA;
break;
case I2C_STATE_TRANSMIT_DATA:
/* wait until the transmit data buffer is empty */
while ((!i2c_flag_get(I2C0, I2C_FLAG_TBE)) && (timeout < I2C_TIME_OUT)) {
timeout++;
}
if (timeout >= I2C_TIME_OUT) {
state = I2C_STATE_ERROR;
break;
}
/* send register MSB value */
i2c_data_transmit(I2C0, data[0]);
timeout = 0;
/* wait until the transmit data buffer is empty */
while ((!i2c_flag_get(I2C0, I2C_FLAG_TBE)) && (timeout < I2C_TIME_OUT)) {
timeout++;
}
if (timeout >= I2C_TIME_OUT) {
state = I2C_STATE_ERROR;
break;
}
if (i2c_flag_get(I2C0, I2C_FLAG_AERR)) {
i2c_stop_on_bus(I2C0);
return I2C_RESULT_NACK;
} else if (i2c_flag_get(I2C0, I2C_FLAG_BERR) || i2c_flag_get(I2C0, I2C_FLAG_LOSTARB)) {
// 可按需清标志
i2c_stop_on_bus(I2C0);
return I2C_RESULT_ERROR;
}
/* send register LSB value */
i2c_data_transmit(I2C0, data[1]);
timeout = 0;
/* wait until BTC bit is set */
while (!i2c_flag_get(I2C0, I2C_FLAG_BTC) && (timeout < I2C_TIME_OUT)) {
timeout++;
}
if (timeout >= I2C_TIME_OUT) {
state = I2C_STATE_ERROR;
break;
}
state = I2C_STATE_STOP;
break;
case I2C_STATE_STOP:
/* send a stop condition to I2C bus */
i2c_stop_on_bus(I2C0);
timeout = 0;
while ((I2C_CTL0(I2C0) & I2C_CTL0_STOP) && (timeout < I2C_TIME_OUT)) {
timeout++;
}
if (timeout >= I2C_TIME_OUT) {
state = I2C_STATE_ERROR;
break;
}
/* i2c master sends STOP signal successfully */
/* success */
return I2C_RESULT_SUCCESS;
case I2C_STATE_ERROR:
/* send a stop condition to I2C bus */
i2c_stop_on_bus(I2C0);
timeout = 0;
while ((I2C_CTL0(I2C0) & I2C_CTL0_STOP) && (timeout < I2C_TIME_OUT)) {
timeout++;
}
if (timeout >= I2C_TIME_OUT) {
return I2C_RESULT_ERROR;
}
i2c_flag_clear(I2C0, I2C_FLAG_AERR);
i2c_flag_clear(I2C0, I2C_FLAG_BERR);
i2c_flag_clear(I2C0, I2C_FLAG_LOSTARB);
retry_count ++;
if (retry_count >= I2C_MAX_RETRY)
{
#ifdef DEBUG_VERBOES
printf("IIC write failed after %d retries\n", I2C_MAX_RETRY);
#endif
return I2C_RESULT_ERROR;
}
/* reset state machine for retry */
state = I2C_STATE_START;
timeout = 0;
/* small delay before retry */
delay_10us(10);
break;
default:
state = I2C_STATE_START;
break;
}
}
return I2C_RESULT_TIMEOUT;
}
i2c_result_t i2c_read_16bits(uint8_t slave_addr, uint8_t reg_addr, uint8_t *data) {
i2c_state_t state = I2C_STATE_START;
uint16_t timeout = 0;
uint8_t retry_count = 0;
bool write_phase = true;
// 参数检查:防止空指针和非法地址
if (data == NULL || slave_addr > 0x7F) {
return I2C_RESULT_INVALID_PARAM;
}
/* enable acknowledge */
i2c_ack_config(I2C0, I2C_ACK_ENABLE);
while (retry_count < (uint8_t)I2C_MAX_RETRY) {
switch (state) {
case I2C_STATE_START:
timeout = 0;
// wait for bus to be idle
while (i2c_flag_get(I2C0, I2C_FLAG_I2CBSY) && (timeout < I2C_TIME_OUT)) {
timeout++;
}
if (timeout >= I2C_TIME_OUT) {
state = I2C_STATE_ERROR;
break;
}
// send start condition
i2c_start_on_bus(I2C0);
state = I2C_STATE_SEND_ADDRESS;
timeout = 0;
break;
case I2C_STATE_SEND_ADDRESS:
/* wait for start condition to be sent */
while ((!i2c_flag_get(I2C0, I2C_FLAG_SBSEND)) && (timeout < I2C_TIME_OUT)) {
timeout++;
}
if (timeout >= I2C_TIME_OUT) {
state = I2C_STATE_ERROR;
break;
}
// send slave address
if (write_phase) {
/* write phase: send address with write bit */
i2c_master_addressing(I2C0, (slave_addr << 1), I2C_TRANSMITTER);
} else {
/* read phase: send address with read bit */
i2c_master_addressing(I2C0, (slave_addr << 1) | 0x01, I2C_RECEIVER);
}
state = I2C_STATE_CLEAR_ADDRESS;
timeout = 0;
break;
case I2C_STATE_CLEAR_ADDRESS:
/* wait for address to be acknowledged */
while ((!i2c_flag_get(I2C0, I2C_FLAG_ADDSEND)) && (timeout < I2C_TIME_OUT)) {
timeout++;
}
if (timeout >= I2C_TIME_OUT) {
state = I2C_STATE_ERROR;
break;
}
if (write_phase) {
/* clear address flag (write phase) */
i2c_flag_clear(I2C0, I2C_FLAG_ADDSEND);
state = I2C_STATE_TRANSMIT_DATA;
} else {
/* READ phase for 2 bytes: set POS=NEXT and disable ACK BEFORE clearing ADDR */
i2c_ackpos_config(I2C0, I2C_ACKPOS_NEXT);
i2c_ack_config(I2C0, I2C_ACK_DISABLE);
/* now clear address flag to release SCL and enter data phase */
i2c_flag_clear(I2C0, I2C_FLAG_ADDSEND);
state = I2C_STATE_RECEIVE_DATA;
}
timeout = 0;
break;
case I2C_STATE_TRANSMIT_DATA:
/* wait for transmit buffer to be empty */
while ((!i2c_flag_get(I2C0, I2C_FLAG_TBE)) && (timeout < I2C_TIME_OUT)) {
timeout++;
}
if (timeout >= I2C_TIME_OUT) {
state = I2C_STATE_ERROR;
break;
}
/* send register address */
i2c_data_transmit(I2C0, reg_addr);
state = I2C_STATE_RESTART;
timeout = 0;
break;
case I2C_STATE_RESTART:
/* wait for byte transfer complete BTC: Bit Transfer Complete */
while ((!i2c_flag_get(I2C0, I2C_FLAG_BTC)) && (timeout < I2C_TIME_OUT)) {
timeout++;
}
if (timeout >= I2C_TIME_OUT) {
state = I2C_STATE_ERROR;
break;
}
/* generate repeated start condition */
i2c_start_on_bus(I2C0);
/* wait for repeated start condition to be sent */
timeout = 0;
while ((!i2c_flag_get(I2C0, I2C_FLAG_SBSEND)) && (timeout < I2C_TIME_OUT)) {
timeout++;
}
if (timeout >= I2C_TIME_OUT) {
state = I2C_STATE_ERROR;
break;
}
/* send slave address with read bit (R/W bit is set by library) */
i2c_master_addressing(I2C0, (slave_addr << 1), I2C_RECEIVER);
/* switch to read phase */
write_phase = false;
state = I2C_STATE_CLEAR_ADDRESS;
timeout = 0;
break;
case I2C_STATE_RECEIVE_DATA:
/* Wait for BTC (both bytes received) */
while ((!i2c_flag_get(I2C0, I2C_FLAG_BTC)) && (timeout < I2C_TIME_OUT)) {
timeout++;
}
if (timeout >= I2C_TIME_OUT) {
state = I2C_STATE_ERROR;
break;
}
/* Send STOP before reading the last two bytes */
i2c_stop_on_bus(I2C0);
/* Read the two bytes back-to-back */
data[0] = i2c_data_receive(I2C0);
data[1] = i2c_data_receive(I2C0);
state = I2C_STATE_STOP;
break;
case I2C_STATE_STOP:
/* wait for stop condition to complete */
while ((I2C_CTL0(I2C0) & I2C_CTL0_STOP) && (timeout < I2C_TIME_OUT)) {
timeout++;
}
if (timeout >= I2C_TIME_OUT) {
state = I2C_STATE_ERROR;
break;
}
/* i2c master sends STOP signal successfully */
/* success */
return I2C_RESULT_SUCCESS;
case I2C_STATE_ERROR:
/* send stop condition to release bus */
i2c_stop_on_bus(I2C0);
retry_count++;
if (retry_count >= I2C_MAX_RETRY) {
#ifdef DEBUG_VERBOES
printf("IIC read failed after %d retries\n", I2C_RETRY_MAX);
#endif
return I2C_RESULT_ERROR;
}
/* reset state machine for retry */
state = I2C_STATE_START;
write_phase = true;
timeout = 0;
/* small delay before retry */
delay_10us(10);
break;
default:
state = I2C_STATE_START;
break;
}
}
return I2C_RESULT_TIMEOUT;
}
#ifdef DEBUG_VERBOSE
/*!
\brief get status string for debugging
\param[in] status: i2c_status_t value
\param[out] none
\retval const char* status string
*/
const char* i2c_get_status_string(i2c_result_t status) {
switch (status) {
case I2C_RESULT_SUCCESS:
return "SUCCESS";
case I2C_RESULT_TIMEOUT:
return "TIMEOUT";
case I2C_RESULT_NACK:
return "NACK";
case I2C_RESULT_BUS_BUSY:
return "BUS_BUSY";
case I2C_RESULT_ERROR:
return "ERROR";
case I2C_RESULT_INVALID_PARAM:
return "INVALID_PARAM";
default:
return "UNKNOWN";
}
}
#endif

View File

@@ -38,8 +38,8 @@ OF SUCH DAMAGE.
#include "led.h"
#include "command.h"
#include <stdio.h>
bool g_status_switch = false;
#include "i2c.h"
#include "board_config.h"
/*!
\brief main function
@@ -56,11 +56,31 @@ int main(void)
led_init();
printf("Hello USART0!");
// 移除led_off()调用让心跳函数控制LED
#ifdef DEBUG_VERBOSE
char hello_world[] = {"Hello World!\r\n"};
for (uint8_t i = 0; i < sizeof(hello_world); i++)
{
while (usart_flag_get(RS485_PHY, USART_FLAG_TBE) == RESET) {}
usart_data_transmit(RS485_PHY, hello_world[i]);
}
while (usart_flag_get(RS485_PHY, USART_FLAG_TC) == RESET) {}
#endif
i2c_config();
#ifdef DEBUG_VERBOSE
i2c_scan();
i2c_bus_reset();
#endif
while(1){
// 使用不会干扰SysTick中断的安全延时函数
delay_ms_safe(100);
command_process();
delay_ms(10);
}
}

234
Src/soft_i2c.c Normal file
View File

@@ -0,0 +1,234 @@
//
// Created by dell on 24-12-28.
//
#include "soft_i2c.h"
/*!
\brief delay
\param[in] none
\param[out] none
\retval none
*/
void soft_i2c_delay(void) {
delay_10us(2); // Adjust delay as needed
/* delay to freq
* 15KHz: delay_us(20);
* 65KHz: delay_us(1);
*/
}
/*!
\brief configure the software IIC GPIO
\param[in] none
\param[out] none
\retval none
*/
void soft_i2c_config(void) {
rcu_periph_clock_enable(RCU_GPIO_I2C);
gpio_mode_set(I2C_SCL_PORT, GPIO_MODE_OUTPUT, GPIO_PUPD_PULLUP, I2C_SCL_PIN);
gpio_output_options_set(I2C_SCL_PORT, GPIO_OTYPE_OD, GPIO_OSPEED_50MHZ, I2C_SCL_PIN);
gpio_mode_set(I2C_SDA_PORT, GPIO_MODE_OUTPUT, GPIO_PUPD_PULLUP, I2C_SDA_PIN);
gpio_output_options_set(I2C_SDA_PORT, GPIO_OTYPE_OD, GPIO_OSPEED_50MHZ, I2C_SDA_PIN);
I2C_SCL_HIGH();
I2C_SDA_HIGH();
}
/*!
\brief generate I2C start signal
\param[in] none
\param[out] none
\retval none
*/
void soft_i2c_start(void) {
I2C_SDA_HIGH();
I2C_SCL_HIGH();
soft_i2c_delay();
I2C_SDA_LOW();
soft_i2c_delay();
I2C_SCL_LOW();
}
/*!
\brief generate I2C stop signal
\param[in] none
\param[out] none
\retval none
*/
void soft_i2c_stop(void) {
I2C_SCL_LOW(); // 确保时钟为低
I2C_SDA_LOW(); // 拉低数据线
soft_i2c_delay();
I2C_SCL_HIGH(); // 拉高时钟
soft_i2c_delay();
I2C_SDA_HIGH(); // 在时钟高电平时拉高数据线产生停止条件
soft_i2c_delay(); // 添加缺失的延时
}
/*!
\brief send I2C ACK signal
\param[in] none
\param[out] none
\retval none
*/
void soft_i2c_send_ack(void) {
// sda_out();
I2C_SDA_LOW();
soft_i2c_delay();
I2C_SCL_HIGH();
soft_i2c_delay();
I2C_SCL_LOW();
soft_i2c_delay();
I2C_SDA_HIGH();
}
/*!
\brief send I2C NACK signal
\param[in] none
\param[out] none
\retval none
*/
void soft_i2c_send_nack(void) {
I2C_SDA_HIGH();
soft_i2c_delay();
I2C_SCL_HIGH();
soft_i2c_delay();
I2C_SCL_LOW();
soft_i2c_delay();
I2C_SDA_HIGH();
}
/*!
\brief wait I2C ACK signal
\param[in] none
\param[out] none
\retval 0: ACK received, 1: ACK not received
*/
uint8_t soft_i2c_wait_ack(void) {
I2C_SDA_HIGH(); // 释放SDA线让从设备控制
soft_i2c_delay();
I2C_SCL_HIGH(); // 拉高时钟
soft_i2c_delay();
uint8_t ack = !I2C_SDA_READ(); // 读取ACK信号低电平为ACK
I2C_SCL_LOW(); // 拉低时钟
soft_i2c_delay(); // 添加缺失的延时
return ack;
}
/*!
\brief send a byte via I2C
\param[in] byte: byte to be sent
\param[out] none
\retval none
*/
void soft_i2c_send_byte(uint8_t byte) {
// sda_out();
for (int i = 0; i < 8; i++) {
if (byte & 0x80) {
I2C_SDA_HIGH();
} else {
I2C_SDA_LOW();
}
byte <<= 1;
soft_i2c_delay();
I2C_SCL_HIGH();
soft_i2c_delay();
I2C_SCL_LOW();
soft_i2c_delay();
}
}
/*!
\brief receive a byte via I2C
\param[in] ack: 1: send ACK, 0: send NACK
\param[out] none
\retval received byte
*/
uint8_t soft_i2c_receive_byte(uint8_t ack) {
uint8_t byte = 0;
I2C_SDA_HIGH();
for (int i = 0; i < 8; i++) {
byte <<= 1;
I2C_SCL_HIGH();
soft_i2c_delay();
if (I2C_SDA_READ()) {
byte |= 0x01;
}
I2C_SCL_LOW();
soft_i2c_delay();
}
if (ack) {
soft_i2c_send_ack();
} else {
soft_i2c_send_nack();
}
return byte;
}
uint8_t soft_i2c_write_16bits(uint8_t slave_addr, uint8_t reg_addr, uint8_t data[2]) {
/* 参数验证 */
if (data == NULL || slave_addr > 0x7F) {
return SOFT_I2C_FAIL;
}
soft_i2c_start();
soft_i2c_send_byte(slave_addr << 1); // 修复左移1位添加写位
if (!soft_i2c_wait_ack()) {
soft_i2c_stop();
return SOFT_I2C_FAIL;
}
soft_i2c_send_byte(reg_addr);
if (!soft_i2c_wait_ack()) {
soft_i2c_stop();
return SOFT_I2C_FAIL;
}
soft_i2c_send_byte(data[0]);
if (!soft_i2c_wait_ack()) {
soft_i2c_stop();
return SOFT_I2C_FAIL;
}
soft_i2c_send_byte(data[1]);
if (!soft_i2c_wait_ack()) { // 修复:添加错误处理
soft_i2c_stop();
return SOFT_I2C_FAIL;
}
soft_i2c_stop();
return SOFT_I2C_OK;
}
uint8_t soft_i2c_read_16bits(uint8_t slave_addr, uint8_t reg_addr, uint8_t *data)
{
/* 参数验证 */
if (data == NULL || slave_addr > 0x7F) {
return SOFT_I2C_FAIL;
}
/* 写阶段:发送寄存器地址 */
soft_i2c_start();
soft_i2c_send_byte(slave_addr << 1); // 修复左移1位写操作
if (!soft_i2c_wait_ack()) {
soft_i2c_stop();
return SOFT_I2C_FAIL;
}
soft_i2c_send_byte(reg_addr);
if (!soft_i2c_wait_ack()) {
soft_i2c_stop();
return SOFT_I2C_FAIL;
}
/* 读阶段:重新开始并读取数据 */
soft_i2c_start(); // 重新开始
soft_i2c_send_byte((slave_addr << 1) | 0x01); // 修复:正确的读地址
if (!soft_i2c_wait_ack()) {
soft_i2c_stop();
return SOFT_I2C_FAIL;
}
soft_i2c_delay();
data[0] = soft_i2c_receive_byte(1); // 第一个字节发送ACK
data[1] = soft_i2c_receive_byte(0); // 最后一个字节发送NACK
soft_i2c_stop();
return SOFT_I2C_OK;
}

View File

@@ -12,8 +12,7 @@
#include "gd32e23x.h"
#include "systick.h"
volatile static float count_1us = 0;
volatile static float count_1ms = 0;
volatile static uint32_t delay_count = 0;
/**
* ************************************************************************
@@ -24,45 +23,32 @@ volatile static float count_1ms = 0;
*/
void systick_config(void)
{
//设置了 SysTick 定时器的时钟源为 HCLK/8
systick_clksource_set(SYSTICK_CLKSOURCE_HCLK_DIV8);
//计算了每微秒所需的 SysTick 计数值
count_1us = (float)SystemCoreClock/8000000;
//计算了每毫秒所需的 SysTick 计数值
count_1ms = (float)count_1us * 1000;
//设置了 SysTick 定时器的时钟源为 HCLK
systick_clksource_set(SYSTICK_CLKSOURCE_HCLK);
// 配置SysTick为1ms周期中断
// 注意SysTick_Config会自动设置时钟源为HCLK所以需要使用SystemCoreClock/1000
SysTick_Config(SystemCoreClock / 1000); // 1ms中断
SysTick_Config(SystemCoreClock / 1000U); // 1ms中断
NVIC_SetPriority(SysTick_IRQn, 0x00U);
}
/**
* ************************************************************************
* @brief delay_us 秒延时函数
* @brief delay_ms 秒延时函数
*
* @param[in] count 秒值
* @param[in] count 秒值
*
* ************************************************************************
*/
void delay_us(uint32_t count)
void delay_10us(uint32_t count)
{
uint32_t ctl;
// 基于系统时钟的简单循环延时
// 这是一个粗略的估计,实际延时可能有偏差 实测10.2us
uint32_t loops_per_10us = SystemCoreClock / 1700000; // 粗略估计每10微秒的循环次数
//设置 SysTick 计数器的装载值
SysTick->LOAD = (uint32_t)(count * count_1us);
//清零 SysTick 计数器,以确保计数器从零开始计数
SysTick->VAL = 0x0000U;
//使能 SysTick 定时器,开始进行计数
SysTick->CTRL = SysTick_CTRL_ENABLE_Msk;
//等待 SysTick 计数器的计数值达到装载值时退出
do
{
ctl = SysTick->CTRL; //读取 CTRL 寄存器的值
}while((ctl & SysTick_CTRL_ENABLE_Msk)&&!(ctl & SysTick_CTRL_COUNTFLAG_Msk));
//循环退出,禁用 SysTick 定时器
SysTick->CTRL &= ~SysTick_CTRL_ENABLE_Msk;
//将 SysTick 计数器的当前值清零,以便下次使用
SysTick->VAL = 0x0000U;
for(uint32_t i = 0; i < count; i++) {
for(volatile uint32_t j = 0; j < loops_per_10us; j++);
}
}
/**
@@ -75,39 +61,58 @@ void delay_us(uint32_t count)
*/
void delay_ms(uint32_t count)
{
uint32_t ctl;
//设置 SysTick 计数器的装载值
SysTick->LOAD = (uint32_t)(count * count_1ms);
//清零 SysTick 计数器,以确保计数器从零开始计数
SysTick->VAL = 0x0000U;
//使能 SysTick 定时器,开始进行计数
SysTick->CTRL = SysTick_CTRL_ENABLE_Msk;
//等待 SysTick 计数器的计数值达到装载值时退出
do
{
ctl = SysTick->CTRL; //读取 CTRL 寄存器的值
}while((ctl&SysTick_CTRL_ENABLE_Msk)&&!(ctl & SysTick_CTRL_COUNTFLAG_Msk));
//循环退出,禁用 SysTick 定时器
SysTick->CTRL &= ~SysTick_CTRL_ENABLE_Msk;
//将 SysTick 计数器的当前值清零,以便下次使用
SysTick->VAL = 0x0000U;
delay_count = count; // 设置延时计数
while (delay_count != 0U);
}
/**
* ************************************************************************
* @brief delay_ms_safe 毫秒延时函数(不干扰SysTick中断
* @details 使用简单循环实现延时不会重新配置SysTick
* @param[in] count 毫秒值
* @brief 每个 SysTick 中断调用时,减少延时计数
*
* @param[in] void
*
* ************************************************************************
*/
void delay_ms_safe(uint32_t count)
void delay_decrement(void)
{
// 基于系统时钟的简单循环延时
// 这是一个粗略的估计,实际延时可能有偏差
uint32_t loops_per_ms = SystemCoreClock / 8000; // 粗略估计
for(uint32_t i = 0; i < count; i++) {
for(volatile uint32_t j = 0; j < loops_per_ms; j++);
if (delay_count != 0U)
{
delay_count--;
}
}
}
// /**
// * ************************************************************************
// * @brief delay_ms_safe 毫秒延时函数不干扰SysTick中断
// * @details 使用简单循环实现延时不会重新配置SysTick
// * @param[in] count 毫秒值
// * ************************************************************************
// */
// void delay_ms_safe(uint32_t count)
// {
// // 基于系统时钟的简单循环延时
// // 这是一个粗略的估计,实际延时可能有偏差
// uint32_t loops_per_ms = SystemCoreClock / 14000; // 粗略估计
// for(uint32_t i = 0; i < count; i++) {
// for(volatile uint32_t j = 0; j < loops_per_ms; j++);
// }
// }
// /**
// * ************************************************************************
// * @brief delay_us_safe 微秒延时函数不干扰SysTick中断
// * @details 使用简单循环实现延时不会重新配置SysTick
// * @param[in] count 微秒值
// * ************************************************************************
// */
// void delay_us_safe(uint32_t count)
// {
// // 基于系统时钟的简单循环延时
// // 这是一个粗略的估计,实际延时可能有偏差
// uint32_t loops_per_us = SystemCoreClock / 22000000; // 粗略估计,每微秒的循环次数
// for(uint32_t i = 0; i < count; i++) {
// for(volatile uint32_t j = 0; j < loops_per_us; j++);
// }
// }

View File

@@ -7,8 +7,8 @@ set(VERSION "V${VERSION_MAJOR}.${VERSION_MINOR}.${VERSION_PATCH}")
string(TIMESTAMP BUILD_DATE "%Y-%m-%d")
# 编译条件如IIC类型等
set(IIC_TYPE "AutoDetectDriveCurrent")
# set(IIC_TYPE "HW-IIC")
# set(IIC_TYPE "AutoDetectDriveCurrent")
set(IIC_TYPE "HW-IIC")
# 其它自定义宏
add_definitions(-DIIC_TYPE=${IIC_TYPE})