Files
gd32e230_uart_ring_buffer/Src/i2c.c

601 lines
22 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//
// Created by dell on 24-12-20.
//
#include "i2c.h"
/*!
\brief configure the GPIO ports
\param[in] none
\param[out] none
\retval none
*/
void i2c_gpio_config(void) {
/* enable IIC GPIO clock */
rcu_periph_clock_enable(RCU_GPIO_I2C);
/* connect I2C_SCL_PIN to I2C_SCL */
gpio_af_set(I2C_SCL_PORT, I2C_GPIO_AF, I2C_SCL_PIN);
/* connect I2C_SDA_PIN to I2C_SDA */
gpio_af_set(I2C_SDA_PORT, I2C_GPIO_AF, I2C_SDA_PIN);
/* configure GPIO pins of I2C */
gpio_mode_set(I2C_SCL_PORT, GPIO_MODE_AF, GPIO_PUPD_PULLUP, I2C_SCL_PIN);
gpio_output_options_set(I2C_SCL_PORT, GPIO_OTYPE_OD, GPIO_OSPEED_50MHZ, I2C_SCL_PIN);
gpio_mode_set(I2C_SDA_PORT, GPIO_MODE_AF, GPIO_PUPD_PULLUP, I2C_SDA_PIN);
gpio_output_options_set(I2C_SDA_PORT, GPIO_OTYPE_OD, GPIO_OSPEED_50MHZ, I2C_SDA_PIN);
}
/*!
\brief configure the I2CX interface
\param[in] none
\param[out] none
\retval none
*/
i2c_result_t i2c_config(void) {
/* configure I2C GPIO */
i2c_gpio_config();
/* enable I2C clock */
rcu_periph_clock_enable(RCU_I2C);
/* configure I2C clock */
i2c_clock_config(I2C0, I2C_SPEED, I2C_DTCY_2);
/* configure I2C address */
i2c_mode_addr_config(I2C0, I2C_I2CMODE_ENABLE, I2C_ADDFORMAT_7BITS, 0xA0);
/* enable I2CX */
i2c_enable(I2C0);
/* enable acknowledge */
i2c_ack_config(I2C0, I2C_ACK_ENABLE);
return I2C_RESULT_SUCCESS;
}
/* wait for SCL to go high, return true if successful, false if timeout */
static bool i2c_wait_scl_high(uint16_t max_wait_time) {
while (max_wait_time--) {
if (gpio_input_bit_get(I2C_SCL_PORT, I2C_SCL_PIN)) {
return true;
}
delay_10us(1);
}
return false;
}
/* generate one manual SCL pulse; return true if SCL observed high (no stuck/overstretch) */
static bool i2c_generate_scl_pulse(void) {
GPIO_BC(I2C_SCL_PORT) = I2C_SCL_PIN; /* drive SCL low */
delay_10us(1);
GPIO_BOP(I2C_SCL_PORT) = I2C_SCL_PIN; /* release SCL (open-drain -> high via pull-up) */
return i2c_wait_scl_high(200); /* wait up to ~2ms for clock stretching release */
}
/*!
\brief reset I2C bus
\param[in] none
\param[out] none
\retval none
*/
i2c_result_t i2c_bus_reset(void) {
/* 1. Disable & deinit peripheral so pins can be fully controlled */
i2c_disable(I2C0);
i2c_deinit(I2C0);
#ifdef DEBUG_VERBOSE
printf("I2C bus reset\r\n");
#endif
/* 2. Configure SCL/SDA as GPIO open-drain outputs with pull-up and release them */
gpio_mode_set(I2C_SCL_PORT, GPIO_MODE_OUTPUT, GPIO_PUPD_PULLUP, I2C_SCL_PIN);
gpio_mode_set(I2C_SDA_PORT, GPIO_MODE_OUTPUT, GPIO_PUPD_PULLUP, I2C_SDA_PIN);
gpio_output_options_set(I2C_SCL_PORT, GPIO_OTYPE_OD, GPIO_OSPEED_50MHZ, I2C_SCL_PIN);
gpio_output_options_set(I2C_SDA_PORT, GPIO_OTYPE_OD, GPIO_OSPEED_50MHZ, I2C_SDA_PIN);
gpio_bit_set(I2C_SCL_PORT, I2C_SCL_PIN); /* release SCL */
gpio_bit_set(I2C_SDA_PORT, I2C_SDA_PIN); /* release SDA */
#ifdef DEBUG_VERBOSE
printf("I2C bus reset: SCL = %d, SDA = %d\r\n", gpio_input_bit_get(I2C_SCL_PORT, I2C_SCL_PIN), gpio_input_bit_get(I2C_SDA_PORT, I2C_SDA_PIN));
#endif
/* 3. Double sample to confirm bus state */
delay_10us(1);
bool scl_value1 = gpio_input_bit_get(I2C_SCL_PORT, I2C_SCL_PIN);
bool sda_value1 = gpio_input_bit_get(I2C_SDA_PORT, I2C_SDA_PIN);
delay_10us(1);
bool scl_value2 = gpio_input_bit_get(I2C_SCL_PORT, I2C_SCL_PIN);
bool sda_value2 = gpio_input_bit_get(I2C_SDA_PORT, I2C_SDA_PIN);
/* 4. If SCL low -> stuck (cannot proceed) */
if (!scl_value2) {
#ifdef DEBUG_VERBOSE
printf("I2C bus reset: SCL stuck low\r\n");
#endif
return I2C_RECOVERY_SCL_STUCK_LOW;
}
/* 5. Fast path: bus idle */
if (scl_value1 && sda_value1 && scl_value2 && sda_value2) {
i2c_config();
#ifdef DEBUG_VERBOSE
printf("I2C bus reset: bus idle\r\n");
#endif
return I2C_RECOVERY_OK;
}
/* 6. SDA low: attempt to free by generating up to I2C_RECOVERY_CLOCKS pulses */
if (scl_value2 && !sda_value2) {
bool sda_released = false;
#ifdef DEBUG_VERBOSE
printf("I2C bus reset: SCL will try to free SDA\r\n");
#endif
for (uint8_t i = 0; i < I2C_RECOVERY_CLOCKS && !sda_released; i++) {
if (!i2c_generate_scl_pulse()) {
return I2C_RECOVERY_SCL_STUCK_LOW; /* SCL failed to go high */
}
if (gpio_input_bit_get(I2C_SDA_PORT, I2C_SDA_PIN)) {
sda_released = true;
}
}
if (!sda_released) {
return I2C_RECOVERY_SDA_STUCK_LOW;
}
/* 7. Generate a STOP condition to leave bus in idle state */
#ifdef DEBUG_VERBOSE
printf("I2C bus reset: generating STOP condition\r\n");
#endif
gpio_bit_reset(I2C_SDA_PORT, I2C_SDA_PIN); /* SDA low */
delay_10us(1);
gpio_bit_set(I2C_SCL_PORT, I2C_SCL_PIN); /* ensure SCL high */
delay_10us(1);
gpio_bit_set(I2C_SDA_PORT, I2C_SDA_PIN); /* SDA rising while SCL high -> STOP */
delay_10us(1);
}
#ifdef DEBUG_VERBOSE
printf("I2C bus reset: bus recovered\r\n");
#endif
/* 8. Reconfigure & enable peripheral */
i2c_config();
return I2C_RECOVERY_OK;
}
/**
* @brief 扫描I2C总线查找连接的设备
*
* 该函数会扫描I2C总线上的所有地址1到126并尝试与每个地址进行通信。
* 如果在某个地址上发现了设备,则会打印出该设备的地址。
* 最后会打印出找到的设备总数。
*/
void i2c_scan(void) {
uint32_t timeout;
uint8_t address;
int found_devices = 0;
// printf("Scanning I2C bus...\r\n");
const char* msg1 = "Scanning I2C bus...\r\n";
for (uint8_t i = 0; msg1[i] != '\0'; i++) {
while (usart_flag_get(I2C_DEBUG_UART, USART_FLAG_TBE) == RESET) {}
usart_data_transmit(I2C_DEBUG_UART, msg1[i]);
}
while (usart_flag_get(I2C_DEBUG_UART, USART_FLAG_TC) == RESET) {}
for (address = 1; address < 127; address++) {
timeout = 0;
// 生成起始条件
while (i2c_flag_get(I2C0, I2C_FLAG_I2CBSY) && (timeout < I2C_TIME_OUT))
timeout++;
if (timeout >= I2C_TIME_OUT) {
continue; // 超时,跳过该地址
}
i2c_start_on_bus(I2C0);
timeout = 0;
// 等待起始条件发送完成
while (!i2c_flag_get(I2C0, I2C_FLAG_SBSEND) && (timeout < I2C_TIME_OUT))
timeout++;
if (timeout >= I2C_TIME_OUT) {
continue; // 超时,跳过该地址
}
i2c_master_addressing(I2C0, (address << 1), I2C_TRANSMITTER);
timeout = 0;
// 等待地址发送完成
while (!i2c_flag_get(I2C0, I2C_FLAG_ADDSEND) && (timeout < I2C_TIME_OUT))
timeout++;
if (timeout < I2C_TIME_OUT) {
i2c_flag_clear(I2C0, I2C_FLAG_ADDSEND);
// printf("Found device at 0x%02X\r\n", address);
const char* msg2_prefix = "Found device at 0x";
for (uint8_t i = 0; msg2_prefix[i] != '\0'; i++) {
while (usart_flag_get(I2C_DEBUG_UART, USART_FLAG_TBE) == RESET) {}
usart_data_transmit(I2C_DEBUG_UART, msg2_prefix[i]);
}
// 发送地址的十六进制表示
uint8_t hex_chars[] = "0123456789ABCDEF";
while (usart_flag_get(I2C_DEBUG_UART, USART_FLAG_TBE) == RESET) {}
usart_data_transmit(I2C_DEBUG_UART, hex_chars[(address >> 4) & 0x0F]);
while (usart_flag_get(I2C_DEBUG_UART, USART_FLAG_TBE) == RESET) {}
usart_data_transmit(I2C_DEBUG_UART, hex_chars[address & 0x0F]);
const char* msg2_suffix = "\r\n";
for (uint8_t i = 0; msg2_suffix[i] != '\0'; i++) {
while (usart_flag_get(I2C_DEBUG_UART, USART_FLAG_TBE) == RESET) {}
usart_data_transmit(I2C_DEBUG_UART, msg2_suffix[i]);
}
while (usart_flag_get(I2C_DEBUG_UART, USART_FLAG_TC) == RESET) {}
found_devices++;
}
// 生成停止条件
i2c_stop_on_bus(I2C0);
timeout = 0;
while (i2c_flag_get(I2C0, I2C_FLAG_STPDET) && (timeout < I2C_TIME_OUT))
timeout++;
}
if (found_devices == 0) {
// printf("No I2C devices found.\r\n");
const char* msg3 = "No I2C devices found.\r\n";
for (uint8_t i = 0; msg3[i] != '\0'; i++) {
while (usart_flag_get(I2C_DEBUG_UART, USART_FLAG_TBE) == RESET) {}
usart_data_transmit(I2C_DEBUG_UART, msg3[i]);
}
while (usart_flag_get(I2C_DEBUG_UART, USART_FLAG_TC) == RESET) {}
} else {
// printf("Total %d I2C devices found.\r\n", found_devices);
const char* msg4_prefix = "Total ";
for (uint8_t i = 0; msg4_prefix[i] != '\0'; i++) {
while (usart_flag_get(I2C_DEBUG_UART, USART_FLAG_TBE) == RESET) {}
usart_data_transmit(I2C_DEBUG_UART, msg4_prefix[i]);
}
// 发送设备数量
if (found_devices >= 10) {
while (usart_flag_get(I2C_DEBUG_UART, USART_FLAG_TBE) == RESET) {}
usart_data_transmit(I2C_DEBUG_UART, '0' + (found_devices / 10));
}
while (usart_flag_get(I2C_DEBUG_UART, USART_FLAG_TBE) == RESET) {}
usart_data_transmit(I2C_DEBUG_UART, '0' + (found_devices % 10));
const char* msg4_suffix = " I2C devices found.\r\n";
for (uint8_t i = 0; msg4_suffix[i] != '\0'; i++) {
while (usart_flag_get(I2C_DEBUG_UART, USART_FLAG_TBE) == RESET) {}
usart_data_transmit(I2C_DEBUG_UART, msg4_suffix[i]);
}
while (usart_flag_get(I2C_DEBUG_UART, USART_FLAG_TC) == RESET) {}
}
}
uint8_t i2c_write_16bits(uint8_t slave_addr, uint8_t reg_addr, uint8_t data[2]) {
uint8_t state = I2C_START;
uint16_t timeout = 0;
uint8_t i2c_timeout_flag = 0;
/* enable acknowledge */
i2c_ack_config(I2C0, I2C_ACK_ENABLE);
while (!(i2c_timeout_flag)) {
switch (state) {
case I2C_START:
/* i2c master sends start signal only when the bus is idle */
while (i2c_flag_get(I2C0, I2C_FLAG_I2CBSY) && (timeout < I2C_TIME_OUT)) {
timeout++;
}
if (timeout < I2C_TIME_OUT) {
i2c_start_on_bus(I2C0);
timeout = 0;
state = I2C_SEND_ADDRESS;
} else {
timeout = 0;
state = I2C_START;
#ifdef DEBUG_VERBOES
printf("i2c bus is busy in WRITE BYTE!\n");
#endif
}
break;
case I2C_SEND_ADDRESS:
/* i2c master sends START signal successfully */
while ((!i2c_flag_get(I2C0, I2C_FLAG_SBSEND)) && (timeout < I2C_TIME_OUT)) {
timeout++;
}
if (timeout < I2C_TIME_OUT) {
i2c_master_addressing(I2C0, slave_addr << 1, I2C_TRANSMITTER);
timeout = 0;
state = I2C_CLEAR_ADDRESS_FLAG;
} else {
timeout = 0;
state = I2C_START;
#ifdef DEBUG_VERBOES
printf("i2c master sends start signal timeout in WRITE BYTE!\n");
#endif
}
break;
case I2C_CLEAR_ADDRESS_FLAG:
/* address flag set means i2c slave sends ACK */
while ((!i2c_flag_get(I2C0, I2C_FLAG_ADDSEND)) && (timeout < I2C_TIME_OUT)) {
timeout++;
}
if (timeout < I2C_TIME_OUT) {
i2c_flag_clear(I2C0, I2C_FLAG_ADDSEND);
timeout = 0;
state = I2C_TRANSMIT_DATA;
} else {
timeout = 0;
state = I2C_START;
#ifdef DEBUG_VERBOES
printf("i2c master clears address flag timeout in WRITE BYTE!\n");
#endif
}
break;
case I2C_TRANSMIT_DATA:
/* wait until the transmit data buffer is empty */
while ((!i2c_flag_get(I2C0, I2C_FLAG_TBE)) && (timeout < I2C_TIME_OUT)) {
timeout++;
}
if (timeout < I2C_TIME_OUT) {
/* send IIC register address */
i2c_data_transmit(I2C0, reg_addr);
timeout = 0;
} else {
timeout = 0;
state = I2C_START;
#ifdef DEBUG_VERBOES
printf("i2c master sends data timeout in WRITE BYTE!\n");
#endif
}
/* wait until BTC bit is set */
while ((!i2c_flag_get(I2C0, I2C_FLAG_BTC)) && (timeout < I2C_TIME_OUT)) {
timeout++;
}
if (timeout < I2C_TIME_OUT) {
/* send register MSB value */
i2c_data_transmit(I2C0, data[0]);
timeout = 0;
} else {
timeout = 0;
state = I2C_START;
#ifdef DEBUG_VERBOES
printf("i2c master sends MSB data timeout in WRITE BYTE!\n");
#endif
}
/* wait until BTC bit is set */
while ((!i2c_flag_get(I2C0, I2C_FLAG_BTC)) && (timeout < I2C_TIME_OUT)) {
timeout++;
}
if (timeout < I2C_TIME_OUT) {
/* send register LSB value */
i2c_data_transmit(I2C0, data[1]);
timeout = 0;
state = I2C_STOP;
} else {
timeout = 0;
state = I2C_START;
#ifdef DEBUG_VERBOES
printf("i2c master sends LSB data timeout in WRITE BYTE!\n");
#endif
}
/* wait until BTC bit is set */
while ((!i2c_flag_get(I2C0, I2C_FLAG_BTC)) && (timeout < I2C_TIME_OUT)) {
timeout++;
}
if (timeout < I2C_TIME_OUT) {
state = I2C_STOP;
timeout = 0;
} else {
timeout = 0;
state = I2C_START;
#ifdef DEBUG_VERBOES
printf("i2c master sends data timeout in WRITE BYTE!\n");
#endif
}
break;
case I2C_STOP:
/* send a stop condition to I2C bus */
i2c_stop_on_bus(I2C0);
/* i2c master sends STOP signal successfully */
while ((I2C_CTL0(I2C0) & I2C_CTL0_STOP) && (timeout < I2C_TIME_OUT)) {
timeout++;
}
if (timeout < I2C_TIME_OUT) {
timeout = 0;
state = I2C_END;
i2c_timeout_flag = I2C_OK;
} else {
timeout = 0;
state = I2C_START;
#ifdef DEBUG_VERBOES
printf("i2c master sends stop signal timeout in WRITE BYTE!\n");
#endif
}
break;
default:
state = I2C_START;
i2c_timeout_flag = I2C_OK;
timeout = 0;
#ifdef DEBUG_VERBOES
printf("i2c master sends start signal in WRITE BYTE.\n");
#endif
break;
}
}
return I2C_END;
}
uint8_t i2c_read_16bits(uint8_t slave_addr, uint8_t reg_addr, uint8_t *data) {
uint8_t state = I2C_START;
uint8_t read_cycle = 0;
uint16_t timeout = 0;
uint8_t i2c_timeout_flag = 0;
uint8_t number_of_byte = 2;
/* enable acknowledge */
i2c_ack_config(I2C0, I2C_ACK_ENABLE);
while (!(i2c_timeout_flag)) {
switch (state) {
case I2C_START:
if (RESET == read_cycle) {
/* i2c master sends start signal only when the bus is idle */
while (i2c_flag_get(I2C0, I2C_FLAG_I2CBSY) && (timeout < I2C_TIME_OUT)) {
timeout++;
}
if (timeout < I2C_TIME_OUT) {
/* whether to send ACK or not for the next byte */
i2c_ackpos_config(I2C0, I2C_ACKPOS_NEXT);
} else {
// i2c_bus_reset();
timeout = 0;
state = I2C_START;
#ifdef DEBUG_VERBOES
printf("i2c bus is busy in READ!\n");
#endif
}
}
/* send the start signal */
i2c_start_on_bus(I2C0);
timeout = 0;
state = I2C_SEND_ADDRESS;
break;
case I2C_SEND_ADDRESS:
/* i2c master sends START signal successfully */
while ((!i2c_flag_get(I2C0, I2C_FLAG_SBSEND)) && (timeout < I2C_TIME_OUT)) {
timeout++;
}
if (timeout < I2C_TIME_OUT) {
if (RESET == read_cycle) {
i2c_master_addressing(I2C0, slave_addr << 1, I2C_TRANSMITTER);
state = I2C_CLEAR_ADDRESS_FLAG;
} else {
i2c_master_addressing(I2C0, slave_addr << 1, I2C_RECEIVER);
i2c_ack_config(I2C0, I2C_ACK_DISABLE);
state = I2C_CLEAR_ADDRESS_FLAG;
}
timeout = 0;
} else {
timeout = 0;
state = I2C_START;
read_cycle = RESET;
#ifdef DEBUG_VERBOES
printf("i2c master sends start signal timeout in READ!\n");
#endif
}
break;
case I2C_CLEAR_ADDRESS_FLAG:
/* address flag set means i2c slave sends ACK */
while ((!i2c_flag_get(I2C0, I2C_FLAG_ADDSEND)) && (timeout < I2C_TIME_OUT)) {
timeout++;
}
if (timeout < I2C_TIME_OUT) {
i2c_flag_clear(I2C0, I2C_FLAG_ADDSEND);
if ((SET == read_cycle) && (1 == number_of_byte)) {
/* send a stop condition to I2C bus */
i2c_stop_on_bus(I2C0);
}
timeout = 0;
state = I2C_TRANSMIT_DATA;
} else {
timeout = 0;
state = I2C_START;
read_cycle = RESET;
#ifdef DEBUG_VERBOES
printf("i2c master clears address flag timeout in READ!\n");
#endif
}
break;
case I2C_TRANSMIT_DATA:
if (RESET == read_cycle) {
/* wait until the transmit data buffer is empty */
while ((!i2c_flag_get(I2C0, I2C_FLAG_TBE)) && (timeout < I2C_TIME_OUT)) {
timeout++;
}
if (timeout < I2C_TIME_OUT) {
/* send the EEPROM's internal address to write to : only one byte address */
i2c_data_transmit(I2C0, reg_addr);
timeout = 0;
} else {
timeout = 0;
state = I2C_START;
read_cycle = RESET;
#ifdef DEBUG_VERBOES
printf("i2c master wait data buffer is empty timeout in READ!\n");
#endif
}
/* wait until BTC bit is set */
while ((!i2c_flag_get(I2C0, I2C_FLAG_BTC)) && (timeout < I2C_TIME_OUT)) {
timeout++;
}
if (timeout < I2C_TIME_OUT) {
timeout = 0;
state = I2C_START;
read_cycle = SET;
} else {
timeout = 0;
state = I2C_START;
read_cycle = RESET;
#ifdef DEBUG_VERBOES
printf("i2c master sends register address timeout in READ!\n");
#endif
}
} else {
while (number_of_byte) {
timeout++;
if (2 == number_of_byte) {
/* wait until BTC bit is set */
while (!i2c_flag_get(I2C0, I2C_FLAG_BTC));
/* send a stop condition to I2C bus */
i2c_stop_on_bus(I2C0);
}
/* wait until RBNE bit is set */
if (i2c_flag_get(I2C0, I2C_FLAG_RBNE)) {
/* read a byte from the EEPROM */
*data = i2c_data_receive(I2C0);
/* point to the next location where the byte read will be saved */
data++;
/* decrement the read bytes counter */
number_of_byte--;
timeout = 0;
}
if (timeout > I2C_TIME_OUT) {
timeout = 0;
state = I2C_START;
read_cycle = 0;
#ifdef DEBUG_VERBOES
printf("i2c master sends data timeout in READ!\n");
#endif
}
}
timeout = 0;
state = I2C_STOP;
}
break;
case I2C_STOP:
/* i2c master sends STOP signal successfully */
while ((I2C_CTL0(I2C0) & I2C_CTL0_STOP) && (timeout < I2C_TIME_OUT)) {
timeout++;
}
if (timeout < I2C_TIME_OUT) {
timeout = 0;
state = I2C_END;
i2c_timeout_flag = I2C_OK;
} else {
timeout = 0;
state = I2C_START;
read_cycle = 0;
#ifdef DEBUG_VERBOES
printf("i2c master sends stop signal timeout in READ!\n");
#endif
}
break;
default:
state = I2C_START;
read_cycle = 0;
i2c_timeout_flag = I2C_OK;
timeout = 0;
#ifdef DEBUG_VERBOES
printf("i2c master sends start signal in READ.\n");
#endif
break;
}
}
return I2C_END;
}