// // Created by dell on 24-12-20. // #include "i2c.h" /*! \brief configure the GPIO ports \param[in] none \param[out] none \retval none */ void i2c_gpio_config(void) { /* enable IIC GPIO clock */ rcu_periph_clock_enable(RCU_GPIO_I2C); /* connect I2C_SCL_PIN to I2C_SCL */ gpio_af_set(I2C_SCL_PORT, I2C_GPIO_AF, I2C_SCL_PIN); /* connect I2C_SDA_PIN to I2C_SDA */ gpio_af_set(I2C_SDA_PORT, I2C_GPIO_AF, I2C_SDA_PIN); /* configure GPIO pins of I2C */ gpio_mode_set(I2C_SCL_PORT, GPIO_MODE_AF, GPIO_PUPD_PULLUP, I2C_SCL_PIN); gpio_output_options_set(I2C_SCL_PORT, GPIO_OTYPE_OD, GPIO_OSPEED_50MHZ, I2C_SCL_PIN); gpio_mode_set(I2C_SDA_PORT, GPIO_MODE_AF, GPIO_PUPD_PULLUP, I2C_SDA_PIN); gpio_output_options_set(I2C_SDA_PORT, GPIO_OTYPE_OD, GPIO_OSPEED_50MHZ, I2C_SDA_PIN); } /*! \brief configure the I2CX interface \param[in] none \param[out] none \retval none */ i2c_result_t i2c_config(void) { /* configure I2C GPIO */ i2c_gpio_config(); /* enable I2C clock */ rcu_periph_clock_enable(RCU_I2C); /* configure I2C clock */ i2c_clock_config(I2C0, I2C_SPEED, I2C_DTCY_2); /* configure I2C address */ i2c_mode_addr_config(I2C0, I2C_I2CMODE_ENABLE, I2C_ADDFORMAT_7BITS, 0xA0); /* enable I2CX */ i2c_enable(I2C0); /* enable acknowledge */ i2c_ack_config(I2C0, I2C_ACK_ENABLE); return I2C_RESULT_SUCCESS; } /* wait for SCL to go high, return true if successful, false if timeout */ static bool i2c_wait_scl_high(uint16_t max_wait_time) { while (max_wait_time--) { if (gpio_input_bit_get(I2C_SCL_PORT, I2C_SCL_PIN)) { return true; } delay_10us(1); } return false; } /* generate one manual SCL pulse; return true if SCL observed high (no stuck/overstretch) */ static bool i2c_generate_scl_pulse(void) { GPIO_BC(I2C_SCL_PORT) = I2C_SCL_PIN; /* drive SCL low */ delay_10us(1); GPIO_BOP(I2C_SCL_PORT) = I2C_SCL_PIN; /* release SCL (open-drain -> high via pull-up) */ return i2c_wait_scl_high(200); /* wait up to ~2ms for clock stretching release */ } /*! \brief reset I2C bus \param[in] none \param[out] none \retval none */ i2c_result_t i2c_bus_reset(void) { /* 1. Disable & deinit peripheral so pins can be fully controlled */ i2c_disable(I2C0); i2c_deinit(I2C0); #ifdef DEBUG_VERBOSE printf("I2C bus reset\r\n"); #endif /* 2. Configure SCL/SDA as GPIO open-drain outputs with pull-up and release them */ gpio_mode_set(I2C_SCL_PORT, GPIO_MODE_OUTPUT, GPIO_PUPD_PULLUP, I2C_SCL_PIN); gpio_mode_set(I2C_SDA_PORT, GPIO_MODE_OUTPUT, GPIO_PUPD_PULLUP, I2C_SDA_PIN); gpio_output_options_set(I2C_SCL_PORT, GPIO_OTYPE_OD, GPIO_OSPEED_50MHZ, I2C_SCL_PIN); gpio_output_options_set(I2C_SDA_PORT, GPIO_OTYPE_OD, GPIO_OSPEED_50MHZ, I2C_SDA_PIN); gpio_bit_set(I2C_SCL_PORT, I2C_SCL_PIN); /* release SCL */ gpio_bit_set(I2C_SDA_PORT, I2C_SDA_PIN); /* release SDA */ #ifdef DEBUG_VERBOSE printf("I2C bus reset: SCL = %d, SDA = %d\r\n", gpio_input_bit_get(I2C_SCL_PORT, I2C_SCL_PIN), gpio_input_bit_get(I2C_SDA_PORT, I2C_SDA_PIN)); #endif /* 3. Double sample to confirm bus state */ delay_10us(1); bool scl_value1 = gpio_input_bit_get(I2C_SCL_PORT, I2C_SCL_PIN); bool sda_value1 = gpio_input_bit_get(I2C_SDA_PORT, I2C_SDA_PIN); delay_10us(1); bool scl_value2 = gpio_input_bit_get(I2C_SCL_PORT, I2C_SCL_PIN); bool sda_value2 = gpio_input_bit_get(I2C_SDA_PORT, I2C_SDA_PIN); /* 4. If SCL low -> stuck (cannot proceed) */ if (!scl_value2) { #ifdef DEBUG_VERBOSE printf("I2C bus reset: SCL stuck low\r\n"); #endif return I2C_RECOVERY_SCL_STUCK_LOW; } /* 5. Fast path: bus idle */ if (scl_value1 && sda_value1 && scl_value2 && sda_value2) { i2c_config(); #ifdef DEBUG_VERBOSE printf("I2C bus reset: bus idle\r\n"); #endif return I2C_RECOVERY_OK; } /* 6. SDA low: attempt to free by generating up to I2C_RECOVERY_CLOCKS pulses */ if (scl_value2 && !sda_value2) { bool sda_released = false; #ifdef DEBUG_VERBOSE printf("I2C bus reset: SCL will try to free SDA\r\n"); #endif for (uint8_t i = 0; i < I2C_RECOVERY_CLOCKS && !sda_released; i++) { if (!i2c_generate_scl_pulse()) { return I2C_RECOVERY_SCL_STUCK_LOW; /* SCL failed to go high */ } if (gpio_input_bit_get(I2C_SDA_PORT, I2C_SDA_PIN)) { sda_released = true; } } if (!sda_released) { return I2C_RECOVERY_SDA_STUCK_LOW; } /* 7. Generate a STOP condition to leave bus in idle state */ #ifdef DEBUG_VERBOSE printf("I2C bus reset: generating STOP condition\r\n"); #endif gpio_bit_reset(I2C_SDA_PORT, I2C_SDA_PIN); /* SDA low */ delay_10us(1); gpio_bit_set(I2C_SCL_PORT, I2C_SCL_PIN); /* ensure SCL high */ delay_10us(1); gpio_bit_set(I2C_SDA_PORT, I2C_SDA_PIN); /* SDA rising while SCL high -> STOP */ delay_10us(1); } #ifdef DEBUG_VERBOSE printf("I2C bus reset: bus recovered\r\n"); #endif /* 8. Reconfigure & enable peripheral */ i2c_config(); return I2C_RECOVERY_OK; } /** * @brief 扫描I2C总线,查找连接的设备 * * 该函数会扫描I2C总线上的所有地址(1到126),并尝试与每个地址进行通信。 * 如果在某个地址上发现了设备,则会打印出该设备的地址。 * 最后会打印出找到的设备总数。 */ void i2c_scan(void) { uint32_t timeout; uint8_t address; int found_devices = 0; // printf("Scanning I2C bus...\r\n"); const char* msg1 = "Scanning I2C bus...\r\n"; for (uint8_t i = 0; msg1[i] != '\0'; i++) { while (usart_flag_get(I2C_DEBUG_UART, USART_FLAG_TBE) == RESET) {} usart_data_transmit(I2C_DEBUG_UART, msg1[i]); } while (usart_flag_get(I2C_DEBUG_UART, USART_FLAG_TC) == RESET) {} for (address = 1; address < 127; address++) { timeout = 0; // 生成起始条件 while (i2c_flag_get(I2C0, I2C_FLAG_I2CBSY) && (timeout < I2C_TIME_OUT)) timeout++; if (timeout >= I2C_TIME_OUT) { continue; // 超时,跳过该地址 } i2c_start_on_bus(I2C0); timeout = 0; // 等待起始条件发送完成 while (!i2c_flag_get(I2C0, I2C_FLAG_SBSEND) && (timeout < I2C_TIME_OUT)) timeout++; if (timeout >= I2C_TIME_OUT) { continue; // 超时,跳过该地址 } i2c_master_addressing(I2C0, (address << 1), I2C_TRANSMITTER); timeout = 0; // 等待地址发送完成 while (!i2c_flag_get(I2C0, I2C_FLAG_ADDSEND) && (timeout < I2C_TIME_OUT)) timeout++; if (timeout < I2C_TIME_OUT) { i2c_flag_clear(I2C0, I2C_FLAG_ADDSEND); // printf("Found device at 0x%02X\r\n", address); const char* msg2_prefix = "Found device at 0x"; for (uint8_t i = 0; msg2_prefix[i] != '\0'; i++) { while (usart_flag_get(I2C_DEBUG_UART, USART_FLAG_TBE) == RESET) {} usart_data_transmit(I2C_DEBUG_UART, msg2_prefix[i]); } // 发送地址的十六进制表示 uint8_t hex_chars[] = "0123456789ABCDEF"; while (usart_flag_get(I2C_DEBUG_UART, USART_FLAG_TBE) == RESET) {} usart_data_transmit(I2C_DEBUG_UART, hex_chars[(address >> 4) & 0x0F]); while (usart_flag_get(I2C_DEBUG_UART, USART_FLAG_TBE) == RESET) {} usart_data_transmit(I2C_DEBUG_UART, hex_chars[address & 0x0F]); const char* msg2_suffix = "\r\n"; for (uint8_t i = 0; msg2_suffix[i] != '\0'; i++) { while (usart_flag_get(I2C_DEBUG_UART, USART_FLAG_TBE) == RESET) {} usart_data_transmit(I2C_DEBUG_UART, msg2_suffix[i]); } while (usart_flag_get(I2C_DEBUG_UART, USART_FLAG_TC) == RESET) {} found_devices++; } // 生成停止条件 i2c_stop_on_bus(I2C0); timeout = 0; while (i2c_flag_get(I2C0, I2C_FLAG_STPDET) && (timeout < I2C_TIME_OUT)) timeout++; } if (found_devices == 0) { // printf("No I2C devices found.\r\n"); const char* msg3 = "No I2C devices found.\r\n"; for (uint8_t i = 0; msg3[i] != '\0'; i++) { while (usart_flag_get(I2C_DEBUG_UART, USART_FLAG_TBE) == RESET) {} usart_data_transmit(I2C_DEBUG_UART, msg3[i]); } while (usart_flag_get(I2C_DEBUG_UART, USART_FLAG_TC) == RESET) {} } else { // printf("Total %d I2C devices found.\r\n", found_devices); const char* msg4_prefix = "Total "; for (uint8_t i = 0; msg4_prefix[i] != '\0'; i++) { while (usart_flag_get(I2C_DEBUG_UART, USART_FLAG_TBE) == RESET) {} usart_data_transmit(I2C_DEBUG_UART, msg4_prefix[i]); } // 发送设备数量 if (found_devices >= 10) { while (usart_flag_get(I2C_DEBUG_UART, USART_FLAG_TBE) == RESET) {} usart_data_transmit(I2C_DEBUG_UART, '0' + (found_devices / 10)); } while (usart_flag_get(I2C_DEBUG_UART, USART_FLAG_TBE) == RESET) {} usart_data_transmit(I2C_DEBUG_UART, '0' + (found_devices % 10)); const char* msg4_suffix = " I2C devices found.\r\n"; for (uint8_t i = 0; msg4_suffix[i] != '\0'; i++) { while (usart_flag_get(I2C_DEBUG_UART, USART_FLAG_TBE) == RESET) {} usart_data_transmit(I2C_DEBUG_UART, msg4_suffix[i]); } while (usart_flag_get(I2C_DEBUG_UART, USART_FLAG_TC) == RESET) {} } } uint8_t i2c_write_16bits(uint8_t slave_addr, uint8_t reg_addr, uint8_t data[2]) { uint8_t state = I2C_START; uint16_t timeout = 0; uint8_t i2c_timeout_flag = 0; /* enable acknowledge */ i2c_ack_config(I2C0, I2C_ACK_ENABLE); while (!(i2c_timeout_flag)) { switch (state) { case I2C_START: /* i2c master sends start signal only when the bus is idle */ while (i2c_flag_get(I2C0, I2C_FLAG_I2CBSY) && (timeout < I2C_TIME_OUT)) { timeout++; } if (timeout < I2C_TIME_OUT) { i2c_start_on_bus(I2C0); timeout = 0; state = I2C_SEND_ADDRESS; } else { timeout = 0; state = I2C_START; #ifdef DEBUG_VERBOES printf("i2c bus is busy in WRITE BYTE!\n"); #endif } break; case I2C_SEND_ADDRESS: /* i2c master sends START signal successfully */ while ((!i2c_flag_get(I2C0, I2C_FLAG_SBSEND)) && (timeout < I2C_TIME_OUT)) { timeout++; } if (timeout < I2C_TIME_OUT) { i2c_master_addressing(I2C0, slave_addr << 1, I2C_TRANSMITTER); timeout = 0; state = I2C_CLEAR_ADDRESS_FLAG; } else { timeout = 0; state = I2C_START; #ifdef DEBUG_VERBOES printf("i2c master sends start signal timeout in WRITE BYTE!\n"); #endif } break; case I2C_CLEAR_ADDRESS_FLAG: /* address flag set means i2c slave sends ACK */ while ((!i2c_flag_get(I2C0, I2C_FLAG_ADDSEND)) && (timeout < I2C_TIME_OUT)) { timeout++; } if (timeout < I2C_TIME_OUT) { i2c_flag_clear(I2C0, I2C_FLAG_ADDSEND); timeout = 0; state = I2C_TRANSMIT_DATA; } else { timeout = 0; state = I2C_START; #ifdef DEBUG_VERBOES printf("i2c master clears address flag timeout in WRITE BYTE!\n"); #endif } break; case I2C_TRANSMIT_DATA: /* wait until the transmit data buffer is empty */ while ((!i2c_flag_get(I2C0, I2C_FLAG_TBE)) && (timeout < I2C_TIME_OUT)) { timeout++; } if (timeout < I2C_TIME_OUT) { /* send IIC register address */ i2c_data_transmit(I2C0, reg_addr); timeout = 0; } else { timeout = 0; state = I2C_START; #ifdef DEBUG_VERBOES printf("i2c master sends data timeout in WRITE BYTE!\n"); #endif } /* wait until BTC bit is set */ while ((!i2c_flag_get(I2C0, I2C_FLAG_BTC)) && (timeout < I2C_TIME_OUT)) { timeout++; } if (timeout < I2C_TIME_OUT) { /* send register MSB value */ i2c_data_transmit(I2C0, data[0]); timeout = 0; } else { timeout = 0; state = I2C_START; #ifdef DEBUG_VERBOES printf("i2c master sends MSB data timeout in WRITE BYTE!\n"); #endif } /* wait until BTC bit is set */ while ((!i2c_flag_get(I2C0, I2C_FLAG_BTC)) && (timeout < I2C_TIME_OUT)) { timeout++; } if (timeout < I2C_TIME_OUT) { /* send register LSB value */ i2c_data_transmit(I2C0, data[1]); timeout = 0; state = I2C_STOP; } else { timeout = 0; state = I2C_START; #ifdef DEBUG_VERBOES printf("i2c master sends LSB data timeout in WRITE BYTE!\n"); #endif } /* wait until BTC bit is set */ while ((!i2c_flag_get(I2C0, I2C_FLAG_BTC)) && (timeout < I2C_TIME_OUT)) { timeout++; } if (timeout < I2C_TIME_OUT) { state = I2C_STOP; timeout = 0; } else { timeout = 0; state = I2C_START; #ifdef DEBUG_VERBOES printf("i2c master sends data timeout in WRITE BYTE!\n"); #endif } break; case I2C_STOP: /* send a stop condition to I2C bus */ i2c_stop_on_bus(I2C0); /* i2c master sends STOP signal successfully */ while ((I2C_CTL0(I2C0) & I2C_CTL0_STOP) && (timeout < I2C_TIME_OUT)) { timeout++; } if (timeout < I2C_TIME_OUT) { timeout = 0; state = I2C_END; i2c_timeout_flag = I2C_OK; } else { timeout = 0; state = I2C_START; #ifdef DEBUG_VERBOES printf("i2c master sends stop signal timeout in WRITE BYTE!\n"); #endif } break; default: state = I2C_START; i2c_timeout_flag = I2C_OK; timeout = 0; #ifdef DEBUG_VERBOES printf("i2c master sends start signal in WRITE BYTE.\n"); #endif break; } } return I2C_END; } uint8_t i2c_read_16bits(uint8_t slave_addr, uint8_t reg_addr, uint8_t *data) { uint8_t state = I2C_START; uint8_t read_cycle = 0; uint16_t timeout = 0; uint8_t i2c_timeout_flag = 0; uint8_t number_of_byte = 2; /* enable acknowledge */ i2c_ack_config(I2C0, I2C_ACK_ENABLE); while (!(i2c_timeout_flag)) { switch (state) { case I2C_START: if (RESET == read_cycle) { /* i2c master sends start signal only when the bus is idle */ while (i2c_flag_get(I2C0, I2C_FLAG_I2CBSY) && (timeout < I2C_TIME_OUT)) { timeout++; } if (timeout < I2C_TIME_OUT) { /* whether to send ACK or not for the next byte */ i2c_ackpos_config(I2C0, I2C_ACKPOS_NEXT); } else { // i2c_bus_reset(); timeout = 0; state = I2C_START; #ifdef DEBUG_VERBOES printf("i2c bus is busy in READ!\n"); #endif } } /* send the start signal */ i2c_start_on_bus(I2C0); timeout = 0; state = I2C_SEND_ADDRESS; break; case I2C_SEND_ADDRESS: /* i2c master sends START signal successfully */ while ((!i2c_flag_get(I2C0, I2C_FLAG_SBSEND)) && (timeout < I2C_TIME_OUT)) { timeout++; } if (timeout < I2C_TIME_OUT) { if (RESET == read_cycle) { i2c_master_addressing(I2C0, slave_addr << 1, I2C_TRANSMITTER); state = I2C_CLEAR_ADDRESS_FLAG; } else { i2c_master_addressing(I2C0, slave_addr << 1, I2C_RECEIVER); i2c_ack_config(I2C0, I2C_ACK_DISABLE); state = I2C_CLEAR_ADDRESS_FLAG; } timeout = 0; } else { timeout = 0; state = I2C_START; read_cycle = RESET; #ifdef DEBUG_VERBOES printf("i2c master sends start signal timeout in READ!\n"); #endif } break; case I2C_CLEAR_ADDRESS_FLAG: /* address flag set means i2c slave sends ACK */ while ((!i2c_flag_get(I2C0, I2C_FLAG_ADDSEND)) && (timeout < I2C_TIME_OUT)) { timeout++; } if (timeout < I2C_TIME_OUT) { i2c_flag_clear(I2C0, I2C_FLAG_ADDSEND); if ((SET == read_cycle) && (1 == number_of_byte)) { /* send a stop condition to I2C bus */ i2c_stop_on_bus(I2C0); } timeout = 0; state = I2C_TRANSMIT_DATA; } else { timeout = 0; state = I2C_START; read_cycle = RESET; #ifdef DEBUG_VERBOES printf("i2c master clears address flag timeout in READ!\n"); #endif } break; case I2C_TRANSMIT_DATA: if (RESET == read_cycle) { /* wait until the transmit data buffer is empty */ while ((!i2c_flag_get(I2C0, I2C_FLAG_TBE)) && (timeout < I2C_TIME_OUT)) { timeout++; } if (timeout < I2C_TIME_OUT) { /* send the EEPROM's internal address to write to : only one byte address */ i2c_data_transmit(I2C0, reg_addr); timeout = 0; } else { timeout = 0; state = I2C_START; read_cycle = RESET; #ifdef DEBUG_VERBOES printf("i2c master wait data buffer is empty timeout in READ!\n"); #endif } /* wait until BTC bit is set */ while ((!i2c_flag_get(I2C0, I2C_FLAG_BTC)) && (timeout < I2C_TIME_OUT)) { timeout++; } if (timeout < I2C_TIME_OUT) { timeout = 0; state = I2C_START; read_cycle = SET; } else { timeout = 0; state = I2C_START; read_cycle = RESET; #ifdef DEBUG_VERBOES printf("i2c master sends register address timeout in READ!\n"); #endif } } else { while (number_of_byte) { timeout++; if (2 == number_of_byte) { /* wait until BTC bit is set */ while (!i2c_flag_get(I2C0, I2C_FLAG_BTC)); /* send a stop condition to I2C bus */ i2c_stop_on_bus(I2C0); } /* wait until RBNE bit is set */ if (i2c_flag_get(I2C0, I2C_FLAG_RBNE)) { /* read a byte from the EEPROM */ *data = i2c_data_receive(I2C0); /* point to the next location where the byte read will be saved */ data++; /* decrement the read bytes counter */ number_of_byte--; timeout = 0; } if (timeout > I2C_TIME_OUT) { timeout = 0; state = I2C_START; read_cycle = 0; #ifdef DEBUG_VERBOES printf("i2c master sends data timeout in READ!\n"); #endif } } timeout = 0; state = I2C_STOP; } break; case I2C_STOP: /* i2c master sends STOP signal successfully */ while ((I2C_CTL0(I2C0) & I2C_CTL0_STOP) && (timeout < I2C_TIME_OUT)) { timeout++; } if (timeout < I2C_TIME_OUT) { timeout = 0; state = I2C_END; i2c_timeout_flag = I2C_OK; } else { timeout = 0; state = I2C_START; read_cycle = 0; #ifdef DEBUG_VERBOES printf("i2c master sends stop signal timeout in READ!\n"); #endif } break; default: state = I2C_START; read_cycle = 0; i2c_timeout_flag = I2C_OK; timeout = 0; #ifdef DEBUG_VERBOES printf("i2c master sends start signal in READ.\n"); #endif break; } } return I2C_END; }