add mcu flash size detect and auto config usart

This commit is contained in:
2025-08-25 17:26:19 +08:00
parent 2d752eed5e
commit d651ff73c9
7 changed files with 136 additions and 19 deletions

52
Src/board_config.c Normal file
View File

@@ -0,0 +1,52 @@
#include "gd32e23x.h"
#include "board_config.h"
#include "systick.h"
/******************************************************************************/
#define FLASH_SIZE_ADDR (*(const uint8_t *)0x1FFFF7E0) // Flash base address
/******************************************************************************/
/* 前向声明中断处理函数 */
void usart0_irq_handler(void);
void usart1_irq_handler(void);
usart_config_t g_usart_config = {
.rcu_usart = RCU_USART1,
.usart_periph = USART1,
.irq_type = USART1_IRQn,
.irq_handler = usart1_irq_handler // 初始化函数指针
};
uint8_t g_mcu_flash_size = 0;
void mcu_detect_and_config(void) {
g_mcu_flash_size = FLASH_SIZE_ADDR;
switch (g_mcu_flash_size) {
case GD32E23XF4:
g_usart_config.rcu_usart = RCU_USART0;
g_usart_config.usart_periph = USART0;
g_usart_config.irq_type = USART0_IRQn;
g_usart_config.irq_handler = usart0_irq_handler; // 指向USART0处理函数
break;
case GD32E23XF6:
g_usart_config.rcu_usart = RCU_USART1;
g_usart_config.usart_periph = USART1;
g_usart_config.irq_type = USART1_IRQn;
g_usart_config.irq_handler = usart1_irq_handler; // 指向USART1处理函数
break;
default: // Default to GD32E23XF8
g_usart_config.rcu_usart = RCU_USART1;
g_usart_config.usart_periph = USART1;
g_usart_config.irq_type = USART1_IRQn;
g_usart_config.irq_handler = usart1_irq_handler; // 指向USART1处理函数
break;
}
}
uint8_t get_flash_size(void) {
return g_mcu_flash_size;
}

View File

@@ -38,6 +38,7 @@ OF SUCH DAMAGE.
#include "uart_ring_buffer.h"
#include "led.h"
#include "ultrasonic_analog.h"
#include "board_config.h"
/*!
\brief this function handles NMI exception
@@ -151,8 +152,15 @@ void TIMER13_IRQHandler(void)
}
void USART0_IRQHandler(void) {
if (RESET != usart_interrupt_flag_get(USART0, USART_INT_FLAG_RBNE)) {
uint8_t data = usart_data_receive(USART0);
(void)uart_ring_buffer_put(data); // 缓冲满时丢弃,返回值可用于统计
// 检查当前配置是否使用USART0并且函数指针不为空
if(g_usart_config.usart_periph == USART0 && g_usart_config.irq_handler != 0) {
g_usart_config.irq_handler(); // 通过函数指针调用对应的处理函数
}
}
void USART1_IRQHandler(void) {
// 检查当前配置是否使用USART1并且函数指针不为空
if(g_usart_config.usart_periph == USART1 && g_usart_config.irq_handler != 0) {
g_usart_config.irq_handler(); // 通过函数指针调用对应的处理函数
}
}

View File

@@ -51,16 +51,20 @@ OF SUCH DAMAGE.
*/
int main(void)
{
led_init();
mcu_detect_and_config();
setbuf(stdout, NULL);
systick_config();
rs485_init();
led_init();
ultrasonic_config();
ultrasonic_pwm_out_cycles();
printf("Flash size: %d Kbytes\n", get_flash_size());
#ifdef DEBUG_VERBOSE
char hello_world[] = {"Hello World!\r\n"};

View File

@@ -16,6 +16,7 @@
#include <unistd.h>
#include <sys/wait.h>
#include "gd32e23x_usart.h"
#include "board_config.h"
#undef errno
extern int errno;
@@ -164,7 +165,7 @@ int _execve(char *name, char **argv, char **env)
// USART0 printf重定向实现
int __io_putchar(int ch) {
// 等待发送缓冲区空
while (usart_flag_get(USART0, USART_FLAG_TBE) == RESET) {}
usart_data_transmit(USART0, (uint8_t)ch);
while (usart_flag_get(RS485_PHY, USART_FLAG_TBE) == RESET) {}
usart_data_transmit(RS485_PHY, (uint8_t)ch);
return ch;
}

View File

@@ -3,7 +3,7 @@
#include "gd32e23x_rcu.h"
#include "gd32e23x_gpio.h"
#include "board_config.h"
#include "uart_ring_buffer.h"
void rs485_init(void) {
@@ -37,7 +37,7 @@ void rs485_init(void) {
usart_enable(RS485_PHY);
nvic_irq_enable(USART0_IRQn, 0);
nvic_irq_enable(RS485_IRQ, 0);
usart_interrupt_enable(RS485_PHY, USART_INT_RBNE);
// usart_interrupt_enable(RS485_PHY, USART_INT_IDLE);
@@ -70,3 +70,37 @@ void rs485_init(void) {
#endif // RS485_MAX13487
}
/******************************************************************************/
/* 具体的中断处理函数实现 */
/******************************************************************************/
void usart0_irq_handler(void) {
// 处理USART0的接收中断
if(usart_interrupt_flag_get(USART0, USART_INT_FLAG_RBNE)) {
uint8_t data = usart_data_receive(USART0);
// 使用原有的环形缓冲区处理逻辑
(void)uart_ring_buffer_put(data); // 缓冲满时丢弃,返回值可用于统计
}
// 处理USART0的空闲中断
if(usart_interrupt_flag_get(USART0, USART_INT_FLAG_IDLE)) {
usart_interrupt_flag_clear(USART0, USART_INT_FLAG_IDLE);
// 在这里添加空闲中断处理逻辑
}
}
void usart1_irq_handler(void) {
// 处理USART1的接收中断
if(usart_interrupt_flag_get(USART1, USART_INT_FLAG_RBNE)) {
uint8_t data = usart_data_receive(USART1);
// 使用原有的环形缓冲区处理逻辑
(void)uart_ring_buffer_put(data); // 缓冲满时丢弃,返回值可用于统计
}
// 处理USART1的空闲中断
if(usart_interrupt_flag_get(USART1, USART_INT_FLAG_IDLE)) {
usart_interrupt_flag_clear(USART1, USART_INT_FLAG_IDLE);
// 在这里添加空闲中断处理逻辑
}
}