generated from hulk/gd32e23x_template_cmake_vscode
Initial commit
This commit is contained in:
407
Src/command.c
Normal file
407
Src/command.c
Normal file
@@ -0,0 +1,407 @@
|
||||
/**
|
||||
* @file command.c
|
||||
* @brief 串口命令解析与处理模块实现
|
||||
* @details 实现基于状态机的协议解析器,支持 D5 03 LEN [cmd] CRC 格式的命令处理,
|
||||
* 包含命令帧解析、响应生成和传感器状态管理功能。
|
||||
* @author Hulk
|
||||
* @date 2025-08-13
|
||||
* @version 1.0.0
|
||||
* @ingroup Command
|
||||
*/
|
||||
|
||||
#include "command.h"
|
||||
#include "uart_ring_buffer.h"
|
||||
#include "led.h"
|
||||
#include <stdint.h>
|
||||
#include <stdbool.h>
|
||||
#include <stdio.h>
|
||||
#include "board_config.h"
|
||||
#include "gd32e23x_usart.h"
|
||||
|
||||
/* ============================================================================
|
||||
* 协议格式说明
|
||||
* ============================================================================ */
|
||||
|
||||
/**
|
||||
* @name 协议帧格式
|
||||
* @{
|
||||
* @details
|
||||
* Host -> Device 命令帧格式:
|
||||
* [0] HEADER = 0xD5 // 包头标识
|
||||
* [1] BOARD_TYPE = 0x03 // 板卡类型标识
|
||||
* [2] LEN = 数据区字节数 // 有效载荷长度
|
||||
* [3..(3+LEN-1)] 数据 // 命令数据,如 "M1", "M2S123"
|
||||
* [last] CRC = 校验码 // 从索引1到(last-1)的累加和低8位
|
||||
*
|
||||
* 最小协议包长度为 6 字节
|
||||
* 数据示例(两字节命令):"M1" / "M2" / "M3"
|
||||
*
|
||||
* Device -> Host 响应帧格式:
|
||||
* [0] 0xB5 // 响应包头
|
||||
* [1] TYPE // 响应类型(0xF0=成功,0xF1..=错误类型)
|
||||
* [2] LEN // 响应数据长度
|
||||
* [3..(3+LEN-1)] 数据 // 响应数据,如 "ok", "err"
|
||||
* [last] CRC // 校验码(同命令帧规则)
|
||||
* @}
|
||||
*/
|
||||
|
||||
/* ============================================================================
|
||||
* 协议常量定义
|
||||
* ============================================================================ */
|
||||
|
||||
/** @name 协议帧标识符
|
||||
* @{ */
|
||||
#define PROTOCOL_PACKAGE_HEADER 0xD5 /**< 命令帧包头标识 */
|
||||
#define PROTOCOL_BOARD_TYPE 0x03 /**< 板卡类型标识 */
|
||||
/** @} */
|
||||
|
||||
/** @name 命令长度限制
|
||||
* @{ */
|
||||
#define COMMAND_MIN_LEN 2 /**< 最小命令长度,如"M1" */
|
||||
#define PROTOCOL_MIN_FRAME_LEN (3 + COMMAND_MIN_LEN + 1) /**< 最小完整帧长度:header+type+len+payload+crc = 6 */
|
||||
#define PROTOCOL_MAX_FRAME_LEN 16 /**< 最大完整帧长度 */
|
||||
/** @} */
|
||||
|
||||
/** @name 响应帧标识符
|
||||
* @{ */
|
||||
#define RESP_HEADER 0xB5 /**< 响应帧包头标识 */
|
||||
#define RESP_TYPE_OK 0xF0 /**< 成功响应类型 */
|
||||
#define RESP_TYPE_CRC_ERR 0xF1 /**< CRC校验错误 */
|
||||
#define RESP_TYPE_HEADER_ERR 0xF2 /**< 包头错误 */
|
||||
#define RESP_TYPE_TYPE_ERR 0xF3 /**< 类型错误 */
|
||||
#define RESP_TYPE_LEN_ERR 0xF4 /**< 长度错误 */
|
||||
/** @} */
|
||||
|
||||
/* ============================================================================
|
||||
* 模块内部变量
|
||||
* ============================================================================ */
|
||||
|
||||
/** @name 预设响应数据
|
||||
* @{ */
|
||||
static const uint8_t s_report_status_ok[] = { 'o', 'k' }; /**< 成功响应数据 */
|
||||
static const uint8_t s_report_status_err[] = { 'e','r','r' }; /**< 错误响应数据 */
|
||||
/** @} */
|
||||
|
||||
/* ============================================================================
|
||||
* 公共接口函数
|
||||
* ============================================================================ */
|
||||
|
||||
/**
|
||||
* @brief 计算协议包的 8 位累加校验值(Checksum)。
|
||||
* @details 对输入缓冲区逐字节累加并取低 8 位,累加范围为 data[1] 至 data[len-2],
|
||||
* 即不包含包头 HEADER(索引 0)与尾部 CRC 字节(索引 len-1)。
|
||||
* 当 len 小于最小协议帧长度(PACKAGE_MIN_LENGTH)时返回 0。
|
||||
* @param data 指向待校验的完整协议包缓冲区。
|
||||
* @param len 缓冲区总长度(字节),应满足 header + type + len + payload + crc 的最小格式。
|
||||
* @return uint8_t 计算得到的 8 位校验值。
|
||||
* @note 本函数实现为简单求和校验(Checksum),非多项式 CRC;与本协议“从索引 1 累加到 len-2”的规则一致。
|
||||
* @ingroup Command
|
||||
*/
|
||||
static uint8_t command_sum_crc_calc(const uint8_t *data, uint8_t len)
|
||||
{
|
||||
uint16_t crc = 0;
|
||||
// 仅在满足协议最小帧长时计算(header + type + len + payload + crc)
|
||||
if (len < PROTOCOL_MIN_FRAME_LEN) return 0;
|
||||
|
||||
// 累加从索引 1 到 len-2 的字节(不含 header 和 crc 字节)
|
||||
for (uint8_t i = 1; i < (len - 1); i++)
|
||||
{
|
||||
crc += data[i];
|
||||
}
|
||||
return (uint8_t)(crc & 0xFF);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 发送协议响应帧(使用GD32E230标准库)。
|
||||
* @details 构造并发送格式为 B5 TYPE LEN [payload] CRC 的响应帧,
|
||||
* 自动计算CRC校验值并通过串口输出。
|
||||
* @param type 响应类型码(如 RESP_TYPE_OK, RESP_TYPE_CRC_ERR 等)。
|
||||
* @param payload 指向响应数据的缓冲区,当len为0时可为NULL。
|
||||
* @param len 响应数据长度(字节),为0时不复制payload数据。
|
||||
* @note 内部使用固定大小缓冲区,超长响应将被丢弃。
|
||||
* @warning 使用GD32E230标准库函数发送,确保串口已正确初始化。
|
||||
* @ingroup Command
|
||||
*/
|
||||
static void send_response(uint8_t type, const uint8_t *payload, uint8_t len)
|
||||
{
|
||||
uint8_t buf_len = (uint8_t)(3 + len + 1);
|
||||
uint8_t buf[16]; // 简单场景足够,必要时可增大
|
||||
if (buf_len > sizeof(buf)) return; // 防御
|
||||
|
||||
buf[0] = RESP_HEADER;
|
||||
buf[1] = type;
|
||||
buf[2] = len;
|
||||
|
||||
// 简化逻辑:只有当len > 0且payload非空时才复制数据
|
||||
if (len > 0 && payload != NULL) {
|
||||
for (uint8_t i = 0; i < len; i++) {
|
||||
buf[3 + i] = payload[i];
|
||||
}
|
||||
}
|
||||
|
||||
buf[buf_len - 1] = command_sum_crc_calc(buf, buf_len);
|
||||
|
||||
// 使用GD32E230标准库函数逐字节发送(标准库实现)
|
||||
for (uint8_t i = 0; i < buf_len; i++) {
|
||||
// 等待发送缓冲区空
|
||||
while (usart_flag_get(RS485_PHY, USART_FLAG_TBE) == RESET) {}
|
||||
usart_data_transmit(RS485_PHY, buf[i]);
|
||||
}
|
||||
|
||||
// 等待发送完成
|
||||
while (usart_flag_get(RS485_PHY, USART_FLAG_TC) == RESET) {}
|
||||
|
||||
// // 使用printf发送(通过重定向到串口)
|
||||
// for (uint8_t i = 0; i < buf_len; i++) {
|
||||
// printf("%c", buf[i]);
|
||||
// }
|
||||
|
||||
// // 刷新缓冲区
|
||||
// fflush(stdout);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 判断字符是否为十进制数字字符。
|
||||
* @param c 待检查的字符(ASCII码值)。
|
||||
* @return bool 判断结果。
|
||||
* @retval true 字符为 '0' 到 '9' 之间的数字字符。
|
||||
* @retval false 字符不是十进制数字字符。
|
||||
* @ingroup Command
|
||||
*/
|
||||
static inline bool is_dec_digit(uint8_t c) { return (c >= '0' && c <= '9'); }
|
||||
|
||||
/**
|
||||
* @brief 从缓冲区解析十进制无符号整数。
|
||||
* @details 从指定位置开始连续读取十进制数字字符,累加构成32位无符号整数。
|
||||
* 遇到非数字字符或到达长度限制时停止解析。
|
||||
* @param s 指向待解析字符缓冲区的起始位置。
|
||||
* @param n 允许解析的最大字符数。
|
||||
* @param out 输出参数,存储解析结果,可为NULL。
|
||||
* @return uint8_t 实际消耗的字符数。
|
||||
* @retval 0 首字符不是数字,解析失败。
|
||||
* @retval >0 成功解析的数字字符个数。
|
||||
* @note 不处理符号、空白字符或进制前缀。
|
||||
* @warning 不进行溢出检查,超出uint32_t范围时按无符号算术溢出处理。
|
||||
* @ingroup Command
|
||||
*/
|
||||
static uint8_t parse_uint_dec(const uint8_t *s, uint8_t n, uint32_t *out)
|
||||
{
|
||||
uint8_t i = 0;
|
||||
uint32_t v = 0;
|
||||
while (i < n && is_dec_digit(s[i]))
|
||||
{
|
||||
v = v * 10u + (uint32_t)(s[i] - '0');
|
||||
i++;
|
||||
}
|
||||
if (i == 0) return 0; // 未读到数字
|
||||
if (out) *out = v; //
|
||||
return i;
|
||||
}
|
||||
|
||||
/* ============================================================================
|
||||
* 命令处理函数
|
||||
* ============================================================================ */
|
||||
|
||||
/**
|
||||
* @brief 解析并处理完整的命令帧。
|
||||
* @details 处理经过协议校验的完整命令帧,支持以下命令格式:
|
||||
* - 无参数命令:M<数字>(如 M1、M2、M10、M201)
|
||||
* - 带参数命令:M<数字>S<参数>(如 M100S123,参数为十进制)
|
||||
*
|
||||
* 支持的命令:
|
||||
* - M1: 开启LED,启用传感器上报
|
||||
* - M2: 关闭LED,禁用传感器上报
|
||||
* - M100S<value>: 设置PWM值(示例)
|
||||
*
|
||||
* @param frame 指向完整命令帧的缓冲区(从包头0xD5开始)。
|
||||
* @param len 命令帧总长度(字节)。
|
||||
* @note 函数内部进行帧格式校验,格式错误时自动发送错误响应。
|
||||
* @warning 假设输入帧已通过基本协议校验(包头、类型、CRC等)。
|
||||
* @ingroup Command
|
||||
*/
|
||||
void handle_command(const uint8_t *frame, uint8_t len) {
|
||||
// 帧格式:D5 03 LEN [cmd] CRC; cmd 支持变长,如 "M1"、"M10"、"M201"、"M123S400",有最小长度限制和命令长度校验
|
||||
uint8_t cmd_len = frame[2];
|
||||
if (len < PROTOCOL_MIN_FRAME_LEN || (uint8_t)(3 + cmd_len + 1) != len) return; // 长度不匹配或者小于最小限制
|
||||
|
||||
const uint8_t *cmd = &frame[3]; // 提取命令部分
|
||||
|
||||
// 命令必须以 'M' 开头
|
||||
if (cmd[0] != 'M'){
|
||||
send_response(RESP_TYPE_TYPE_ERR, s_report_status_err, sizeof(s_report_status_err));
|
||||
return;
|
||||
}
|
||||
|
||||
// 从 'M' 后开始解析
|
||||
uint8_t cmd_index = 1;
|
||||
// 解析M后的十进制数,即命令本体
|
||||
uint32_t base_cmd = 0;
|
||||
uint8_t used_base_cmd = parse_uint_dec(&cmd[cmd_index], (cmd_len - cmd_index), &base_cmd);
|
||||
if (used_base_cmd == 0)
|
||||
{
|
||||
// 'M' 后没有数字,格式错误
|
||||
send_response(RESP_TYPE_LEN_ERR, s_report_status_err, sizeof(s_report_status_err));
|
||||
return;
|
||||
}
|
||||
|
||||
cmd_index = (uint8_t)(cmd_index + used_base_cmd); // 更新索引到命令后
|
||||
|
||||
// 情况A:无附加参数的基础命令
|
||||
if (cmd_index == cmd_len) {
|
||||
// 仅基础命令,如 M1, M2, M3
|
||||
switch (base_cmd) {
|
||||
case 1u: // M1: enable sensor report
|
||||
send_response(RESP_TYPE_OK, s_report_status_ok, sizeof(s_report_status_ok));
|
||||
return;
|
||||
|
||||
case 2u: // M2: disable sensor report
|
||||
send_response(RESP_TYPE_OK, s_report_status_ok, sizeof(s_report_status_ok));
|
||||
return;
|
||||
|
||||
case 3u:
|
||||
send_response(RESP_TYPE_OK, s_report_status_ok, sizeof(s_report_status_ok));
|
||||
return;
|
||||
|
||||
case 4u:
|
||||
send_response(RESP_TYPE_OK, s_report_status_ok, sizeof(s_report_status_ok));
|
||||
return;
|
||||
|
||||
// case 201u: // M201命令
|
||||
// send_response(RESP_TYPE_OK, s_report_status_ok, sizeof(s_report_status_ok));
|
||||
// return;
|
||||
|
||||
default:
|
||||
// 其它无参数命令在此扩展(示例:M100)处理逻辑该如何待定
|
||||
// send_response(RESP_TYPE_OK, s_report_status_ok, sizeof(s_report_status_ok));
|
||||
// return;
|
||||
break;
|
||||
}
|
||||
// 未在处理列表的无参数基础命令,回复错误
|
||||
send_response(RESP_TYPE_TYPE_ERR, s_report_status_err, sizeof(s_report_status_err));
|
||||
return;
|
||||
}
|
||||
|
||||
// 情况B:有附加参数的命令
|
||||
if (cmd[cmd_index] == 'S') {
|
||||
cmd_index++;
|
||||
uint32_t param_value = 0;
|
||||
const uint8_t used_param_cmd = parse_uint_dec(&cmd[cmd_index], (uint8_t)(cmd_len - cmd_index), ¶m_value);
|
||||
if (used_param_cmd == 0) {
|
||||
// 'S' 后没有数字,格式错误
|
||||
send_response(RESP_TYPE_LEN_ERR, s_report_status_err, sizeof(s_report_status_err));
|
||||
return;
|
||||
}
|
||||
|
||||
switch (base_cmd)
|
||||
{
|
||||
// case 100u:
|
||||
// // set_pwm(param_value);
|
||||
// printf("Set PWM to %u\n", param_value);
|
||||
// return;
|
||||
|
||||
default:
|
||||
break;
|
||||
}
|
||||
send_response(RESP_TYPE_TYPE_ERR, s_report_status_err, sizeof(s_report_status_err));
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 处理串口环形缓冲区中的命令数据,解析完整的协议帧。
|
||||
* @details 本函数实现一个基于状态机的协议解析器,用于处理格式为 D5 03 LEN [cmd] CRC 的命令帧:
|
||||
* - 状态1:等待包头字节 PROTOCOL_PACKAGE_HEADER (0xD5)
|
||||
* - 状态2:接收板卡类型字节 PROTOCOL_BOARD_TYPE (0x03)
|
||||
* - 状态3:接收长度字段并计算期望的完整帧长度
|
||||
* - 状态4:继续接收剩余数据直到完整帧
|
||||
* - 状态5:对完整帧进行校验(包头、板卡类型、CRC)并处理
|
||||
*
|
||||
* 函数采用非阻塞方式处理,每次调用处理缓冲区中所有可用数据。
|
||||
* 遇到格式错误、长度异常或校验失败时自动重置状态机。
|
||||
*
|
||||
* @note 本函数使用静态变量维护解析状态,因此不可重入。在中断环境中使用需注意并发安全。
|
||||
* 协议帧最大长度受 PROTOCOL_MAX_FRAME_LEN 限制,超出范围的帧将被丢弃。
|
||||
*
|
||||
* @warning 函数依赖 uart_ring_buffer_available() 和 uart_ring_buffer_get()
|
||||
* 正确实现,若这些函数有缺陷可能导致死循环或数据丢失。
|
||||
*
|
||||
* @see handle_command() 用于处理校验通过的完整命令帧
|
||||
* @see command_sum_crc_calc() 用于计算和校验 CRC 值
|
||||
* @see send_response() 用于发送错误响应
|
||||
*
|
||||
* @ingroup Command
|
||||
*/
|
||||
void command_process(void) {
|
||||
static uint8_t cmd_buf[PROTOCOL_MAX_FRAME_LEN];
|
||||
static uint8_t cmd_len = 0;
|
||||
static uint8_t expected_cmd_len = 0; // 0 表示尚未确定总长度
|
||||
|
||||
while (uart_ring_buffer_available() > 0) {
|
||||
int byte = uart_ring_buffer_get();
|
||||
if (byte < 0) break;
|
||||
|
||||
if (cmd_len == 0) {
|
||||
if ((uint8_t)byte == PROTOCOL_PACKAGE_HEADER) {
|
||||
cmd_buf[cmd_len++] = (uint8_t)byte;
|
||||
expected_cmd_len = 0; // 等待进一步字段以确定长度
|
||||
} else {
|
||||
// 丢弃非起始字节
|
||||
}
|
||||
continue;
|
||||
}
|
||||
|
||||
if (cmd_len >= PROTOCOL_MAX_FRAME_LEN) {
|
||||
// 防御:缓冲溢出,复位状态机
|
||||
cmd_len = 0;
|
||||
expected_cmd_len = 0;
|
||||
}
|
||||
|
||||
// 缓存后续字节
|
||||
cmd_buf[cmd_len++] = (uint8_t)byte;
|
||||
|
||||
// 当到达长度字段(索引 2)后,确定总长度:3 + LEN + 1
|
||||
if (cmd_len == 3) {
|
||||
uint8_t payload_len = cmd_buf[2];
|
||||
expected_cmd_len = (uint8_t)(3 + payload_len + 1);
|
||||
if (expected_cmd_len > PROTOCOL_MAX_FRAME_LEN) {
|
||||
// 异常:长度超界,复位状态机
|
||||
cmd_len = 0;
|
||||
expected_cmd_len = 0;
|
||||
}
|
||||
continue;
|
||||
}
|
||||
|
||||
if (expected_cmd_len > 0 && cmd_len == expected_cmd_len) {
|
||||
// 到帧尾,进行各项校验
|
||||
bool verification_status = true;
|
||||
|
||||
#ifdef DEBUG_VERBOSE
|
||||
if (cmd_buf[0] != PROTOCOL_PACKAGE_HEADER) {
|
||||
send_response(RESP_TYPE_HEADER_ERR, s_report_status_err, sizeof(s_report_status_err));
|
||||
verification_status = false;
|
||||
}
|
||||
#endif
|
||||
|
||||
if (verification_status && cmd_buf[1] != PROTOCOL_BOARD_TYPE) {
|
||||
send_response(RESP_TYPE_TYPE_ERR, s_report_status_err, sizeof(s_report_status_err));
|
||||
verification_status = false;
|
||||
}
|
||||
if (verification_status) {
|
||||
uint8_t crc_calc = command_sum_crc_calc(cmd_buf, expected_cmd_len);
|
||||
uint8_t crc_recv = cmd_buf[expected_cmd_len - 1];
|
||||
if (crc_calc != crc_recv) {
|
||||
send_response(RESP_TYPE_CRC_ERR, s_report_status_err, sizeof(s_report_status_err));
|
||||
verification_status = false;
|
||||
}
|
||||
}
|
||||
|
||||
if (verification_status) {
|
||||
handle_command(cmd_buf, expected_cmd_len);
|
||||
}
|
||||
|
||||
// 复位,等待下一帧
|
||||
cmd_len = 0;
|
||||
expected_cmd_len = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
109
Src/gd32e23x_it.c
Normal file
109
Src/gd32e23x_it.c
Normal file
@@ -0,0 +1,109 @@
|
||||
/*!
|
||||
\file gd32e23x_it.c
|
||||
\brief interrupt service routines
|
||||
|
||||
\version 2025-02-10, V2.4.0, demo for GD32E23x
|
||||
*/
|
||||
|
||||
/*
|
||||
Copyright (c) 2025, GigaDevice Semiconductor Inc.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without modification,
|
||||
are permitted provided that the following conditions are met:
|
||||
|
||||
1. Redistributions of source code must retain the above copyright notice, this
|
||||
list of conditions and the following disclaimer.
|
||||
2. Redistributions in binary form must reproduce the above copyright notice,
|
||||
this list of conditions and the following disclaimer in the documentation
|
||||
and/or other materials provided with the distribution.
|
||||
3. Neither the name of the copyright holder nor the names of its contributors
|
||||
may be used to endorse or promote products derived from this software without
|
||||
specific prior written permission.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
||||
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
||||
IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
|
||||
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
||||
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
||||
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||||
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
|
||||
OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#include "gd32e23x_it.h"
|
||||
#include "systick.h"
|
||||
#include "uart.h"
|
||||
#include "uart_ring_buffer.h"
|
||||
#include "led.h"
|
||||
|
||||
/*!
|
||||
\brief this function handles NMI exception
|
||||
\param[in] none
|
||||
\param[out] none
|
||||
\retval none
|
||||
*/
|
||||
void NMI_Handler(void)
|
||||
{
|
||||
/* if NMI exception occurs, go to infinite loop */
|
||||
while(1) {
|
||||
}
|
||||
}
|
||||
|
||||
/*!
|
||||
\brief this function handles HardFault exception
|
||||
\param[in] none
|
||||
\param[out] none
|
||||
\retval none
|
||||
*/
|
||||
void HardFault_Handler(void)
|
||||
{
|
||||
/* if Hard Fault exception occurs, go to infinite loop */
|
||||
while(1) {
|
||||
}
|
||||
}
|
||||
|
||||
/*!
|
||||
\brief this function handles SVC exception
|
||||
\param[in] none
|
||||
\param[out] none
|
||||
\retval none
|
||||
*/
|
||||
void SVC_Handler(void)
|
||||
{
|
||||
/* if SVC exception occurs, go to infinite loop */
|
||||
while(1) {
|
||||
}
|
||||
}
|
||||
|
||||
/*!
|
||||
\brief this function handles PendSV exception
|
||||
\param[in] none
|
||||
\param[out] none
|
||||
\retval none
|
||||
*/
|
||||
void PendSV_Handler(void)
|
||||
{
|
||||
/* if PendSV exception occurs, go to infinite loop */
|
||||
while(1) {
|
||||
}
|
||||
}
|
||||
|
||||
/*!
|
||||
\brief this function handles SysTick exception
|
||||
\param[in] none
|
||||
\param[out] none
|
||||
\retval none
|
||||
*/
|
||||
void SysTick_Handler(void) {
|
||||
led_heart_beat(); // LED心跳指示灯
|
||||
delay_decrement();
|
||||
}
|
||||
|
||||
void USART0_IRQHandler(void) {
|
||||
if (RESET != usart_interrupt_flag_get(USART0, USART_INT_FLAG_RBNE)) {
|
||||
uint8_t data = usart_data_receive(USART0);
|
||||
(void)uart_ring_buffer_put(data); // 缓冲满时丢弃,返回值可用于统计
|
||||
}
|
||||
}
|
677
Src/i2c.c
Normal file
677
Src/i2c.c
Normal file
@@ -0,0 +1,677 @@
|
||||
//
|
||||
// Created by dell on 24-12-20.
|
||||
//
|
||||
|
||||
#include "i2c.h"
|
||||
|
||||
/*!
|
||||
\brief configure the GPIO ports
|
||||
\param[in] none
|
||||
\param[out] none
|
||||
\retval none
|
||||
*/
|
||||
void i2c_gpio_config(void) {
|
||||
/* enable IIC GPIO clock */
|
||||
rcu_periph_clock_enable(RCU_GPIO_I2C);
|
||||
|
||||
/* connect I2C_SCL_PIN to I2C_SCL */
|
||||
gpio_af_set(I2C_SCL_PORT, I2C_GPIO_AF, I2C_SCL_PIN);
|
||||
/* connect I2C_SDA_PIN to I2C_SDA */
|
||||
gpio_af_set(I2C_SDA_PORT, I2C_GPIO_AF, I2C_SDA_PIN);
|
||||
/* configure GPIO pins of I2C */
|
||||
gpio_mode_set(I2C_SCL_PORT, GPIO_MODE_AF, GPIO_PUPD_PULLUP, I2C_SCL_PIN);
|
||||
gpio_output_options_set(I2C_SCL_PORT, GPIO_OTYPE_OD, GPIO_OSPEED_50MHZ, I2C_SCL_PIN);
|
||||
gpio_mode_set(I2C_SDA_PORT, GPIO_MODE_AF, GPIO_PUPD_PULLUP, I2C_SDA_PIN);
|
||||
gpio_output_options_set(I2C_SDA_PORT, GPIO_OTYPE_OD, GPIO_OSPEED_50MHZ, I2C_SDA_PIN);
|
||||
}
|
||||
|
||||
/*!
|
||||
\brief configure the I2CX interface
|
||||
\param[in] none
|
||||
\param[out] none
|
||||
\retval none
|
||||
*/
|
||||
i2c_result_t i2c_config(void) {
|
||||
/* configure I2C GPIO */
|
||||
i2c_gpio_config();
|
||||
/* enable I2C clock */
|
||||
rcu_periph_clock_enable(RCU_I2C);
|
||||
/* configure I2C clock */
|
||||
i2c_clock_config(I2C0, I2C_SPEED, I2C_DTCY_2);
|
||||
/* configure I2C address */
|
||||
i2c_mode_addr_config(I2C0, I2C_I2CMODE_ENABLE, I2C_ADDFORMAT_7BITS, 0xA0);
|
||||
/* enable I2CX */
|
||||
i2c_enable(I2C0);
|
||||
/* enable acknowledge */
|
||||
i2c_ack_config(I2C0, I2C_ACK_ENABLE);
|
||||
|
||||
return I2C_RESULT_SUCCESS;
|
||||
}
|
||||
|
||||
/* wait for SCL to go high, return true if successful, false if timeout */
|
||||
static bool i2c_wait_scl_high(uint16_t max_wait_time) {
|
||||
while (max_wait_time--) {
|
||||
if (gpio_input_bit_get(I2C_SCL_PORT, I2C_SCL_PIN)) {
|
||||
return true;
|
||||
}
|
||||
delay_10us(1);
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
/* generate one manual SCL pulse; return true if SCL observed high (no stuck/overstretch) */
|
||||
static bool i2c_generate_scl_pulse(void) {
|
||||
GPIO_BC(I2C_SCL_PORT) = I2C_SCL_PIN; /* drive SCL low */
|
||||
delay_10us(1);
|
||||
GPIO_BOP(I2C_SCL_PORT) = I2C_SCL_PIN; /* release SCL (open-drain -> high via pull-up) */
|
||||
return i2c_wait_scl_high(200); /* wait up to ~2ms for clock stretching release */
|
||||
}
|
||||
|
||||
/*!
|
||||
\brief reset I2C bus
|
||||
\param[in] none
|
||||
\param[out] none
|
||||
\retval none
|
||||
*/
|
||||
i2c_result_t i2c_bus_reset(void) {
|
||||
/* 1. Disable & deinit peripheral so pins can be fully controlled */
|
||||
i2c_disable(I2C0);
|
||||
i2c_deinit(I2C0);
|
||||
|
||||
#ifdef DEBUG_VERBOSE
|
||||
printf("I2C bus reset\r\n");
|
||||
#endif
|
||||
|
||||
/* 2. Configure SCL/SDA as GPIO open-drain outputs with pull-up and release them */
|
||||
gpio_mode_set(I2C_SCL_PORT, GPIO_MODE_OUTPUT, GPIO_PUPD_PULLUP, I2C_SCL_PIN);
|
||||
gpio_mode_set(I2C_SDA_PORT, GPIO_MODE_OUTPUT, GPIO_PUPD_PULLUP, I2C_SDA_PIN);
|
||||
gpio_output_options_set(I2C_SCL_PORT, GPIO_OTYPE_OD, GPIO_OSPEED_50MHZ, I2C_SCL_PIN);
|
||||
gpio_output_options_set(I2C_SDA_PORT, GPIO_OTYPE_OD, GPIO_OSPEED_50MHZ, I2C_SDA_PIN);
|
||||
gpio_bit_set(I2C_SCL_PORT, I2C_SCL_PIN); /* release SCL */
|
||||
gpio_bit_set(I2C_SDA_PORT, I2C_SDA_PIN); /* release SDA */
|
||||
|
||||
#ifdef DEBUG_VERBOSE
|
||||
printf("I2C bus reset: SCL = %d, SDA = %d\r\n", gpio_input_bit_get(I2C_SCL_PORT, I2C_SCL_PIN), gpio_input_bit_get(I2C_SDA_PORT, I2C_SDA_PIN));
|
||||
#endif
|
||||
|
||||
/* 3. Double sample to confirm bus state */
|
||||
delay_10us(1);
|
||||
bool scl_value1 = gpio_input_bit_get(I2C_SCL_PORT, I2C_SCL_PIN);
|
||||
bool sda_value1 = gpio_input_bit_get(I2C_SDA_PORT, I2C_SDA_PIN);
|
||||
delay_10us(1);
|
||||
bool scl_value2 = gpio_input_bit_get(I2C_SCL_PORT, I2C_SCL_PIN);
|
||||
bool sda_value2 = gpio_input_bit_get(I2C_SDA_PORT, I2C_SDA_PIN);
|
||||
|
||||
/* 4. If SCL low -> stuck (cannot proceed) */
|
||||
if (!scl_value2) {
|
||||
#ifdef DEBUG_VERBOSE
|
||||
printf("I2C bus reset: SCL stuck low\r\n");
|
||||
#endif
|
||||
return I2C_RECOVERY_SCL_STUCK_LOW;
|
||||
}
|
||||
|
||||
/* 5. Fast path: bus idle */
|
||||
if (scl_value1 && sda_value1 && scl_value2 && sda_value2) {
|
||||
i2c_config();
|
||||
#ifdef DEBUG_VERBOSE
|
||||
printf("I2C bus reset: bus idle\r\n");
|
||||
#endif
|
||||
return I2C_RECOVERY_OK;
|
||||
}
|
||||
|
||||
/* 6. SDA low: attempt to free by generating up to I2C_RECOVERY_CLOCKS pulses */
|
||||
if (scl_value2 && !sda_value2) {
|
||||
bool sda_released = false;
|
||||
#ifdef DEBUG_VERBOSE
|
||||
printf("I2C bus reset: SCL will try to free SDA\r\n");
|
||||
#endif
|
||||
for (uint8_t i = 0; i < I2C_RECOVERY_CLOCKS && !sda_released; i++) {
|
||||
if (!i2c_generate_scl_pulse()) {
|
||||
return I2C_RECOVERY_SCL_STUCK_LOW; /* SCL failed to go high */
|
||||
}
|
||||
if (gpio_input_bit_get(I2C_SDA_PORT, I2C_SDA_PIN)) {
|
||||
sda_released = true;
|
||||
}
|
||||
}
|
||||
if (!sda_released) {
|
||||
return I2C_RECOVERY_SDA_STUCK_LOW;
|
||||
}
|
||||
/* 7. Generate a STOP condition to leave bus in idle state */
|
||||
#ifdef DEBUG_VERBOSE
|
||||
printf("I2C bus reset: generating STOP condition\r\n");
|
||||
#endif
|
||||
gpio_bit_reset(I2C_SDA_PORT, I2C_SDA_PIN); /* SDA low */
|
||||
delay_10us(1);
|
||||
gpio_bit_set(I2C_SCL_PORT, I2C_SCL_PIN); /* ensure SCL high */
|
||||
delay_10us(1);
|
||||
gpio_bit_set(I2C_SDA_PORT, I2C_SDA_PIN); /* SDA rising while SCL high -> STOP */
|
||||
delay_10us(1);
|
||||
}
|
||||
|
||||
#ifdef DEBUG_VERBOSE
|
||||
printf("I2C bus reset: bus recovered\r\n");
|
||||
#endif
|
||||
/* 8. Reconfigure & enable peripheral */
|
||||
i2c_config();
|
||||
return I2C_RECOVERY_OK;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 扫描I2C总线,查找连接的设备
|
||||
*
|
||||
* 该函数会扫描I2C总线上的所有地址(1到126),并尝试与每个地址进行通信。
|
||||
* 如果在某个地址上发现了设备,则会打印出该设备的地址。
|
||||
* 最后会打印出找到的设备总数。
|
||||
*/
|
||||
void i2c_scan(void) {
|
||||
uint32_t timeout;
|
||||
uint8_t address;
|
||||
int found_devices = 0;
|
||||
|
||||
// printf("Scanning I2C bus...\r\n");
|
||||
const char* msg1 = "Scanning I2C bus...\r\n";
|
||||
for (uint8_t i = 0; msg1[i] != '\0'; i++) {
|
||||
while (usart_flag_get(I2C_DEBUG_UART, USART_FLAG_TBE) == RESET) {}
|
||||
usart_data_transmit(I2C_DEBUG_UART, msg1[i]);
|
||||
}
|
||||
while (usart_flag_get(I2C_DEBUG_UART, USART_FLAG_TC) == RESET) {}
|
||||
|
||||
for (address = 1; address < 127; address++) {
|
||||
timeout = 0;
|
||||
|
||||
// 生成起始条件
|
||||
while (i2c_flag_get(I2C0, I2C_FLAG_I2CBSY) && (timeout < I2C_TIME_OUT))
|
||||
timeout++;
|
||||
if (timeout >= I2C_TIME_OUT) {
|
||||
continue; // 超时,跳过该地址
|
||||
}
|
||||
i2c_start_on_bus(I2C0);
|
||||
timeout = 0;
|
||||
|
||||
// 等待起始条件发送完成
|
||||
while (!i2c_flag_get(I2C0, I2C_FLAG_SBSEND) && (timeout < I2C_TIME_OUT))
|
||||
timeout++;
|
||||
if (timeout >= I2C_TIME_OUT) {
|
||||
continue; // 超时,跳过该地址
|
||||
}
|
||||
i2c_master_addressing(I2C0, (address << 1), I2C_TRANSMITTER);
|
||||
timeout = 0;
|
||||
|
||||
// 等待地址发送完成
|
||||
while (!i2c_flag_get(I2C0, I2C_FLAG_ADDSEND) && (timeout < I2C_TIME_OUT))
|
||||
timeout++;
|
||||
if (timeout < I2C_TIME_OUT) {
|
||||
i2c_flag_clear(I2C0, I2C_FLAG_ADDSEND);
|
||||
// printf("Found device at 0x%02X\r\n", address);
|
||||
const char* msg2_prefix = "Found device at 0x";
|
||||
for (uint8_t i = 0; msg2_prefix[i] != '\0'; i++) {
|
||||
while (usart_flag_get(I2C_DEBUG_UART, USART_FLAG_TBE) == RESET) {}
|
||||
usart_data_transmit(I2C_DEBUG_UART, msg2_prefix[i]);
|
||||
}
|
||||
// 发送地址的十六进制表示
|
||||
uint8_t hex_chars[] = "0123456789ABCDEF";
|
||||
while (usart_flag_get(I2C_DEBUG_UART, USART_FLAG_TBE) == RESET) {}
|
||||
usart_data_transmit(I2C_DEBUG_UART, hex_chars[(address >> 4) & 0x0F]);
|
||||
while (usart_flag_get(I2C_DEBUG_UART, USART_FLAG_TBE) == RESET) {}
|
||||
usart_data_transmit(I2C_DEBUG_UART, hex_chars[address & 0x0F]);
|
||||
const char* msg2_suffix = "\r\n";
|
||||
for (uint8_t i = 0; msg2_suffix[i] != '\0'; i++) {
|
||||
while (usart_flag_get(I2C_DEBUG_UART, USART_FLAG_TBE) == RESET) {}
|
||||
usart_data_transmit(I2C_DEBUG_UART, msg2_suffix[i]);
|
||||
}
|
||||
while (usart_flag_get(I2C_DEBUG_UART, USART_FLAG_TC) == RESET) {}
|
||||
found_devices++;
|
||||
}
|
||||
|
||||
// 生成停止条件
|
||||
i2c_stop_on_bus(I2C0);
|
||||
|
||||
timeout = 0;
|
||||
|
||||
while (i2c_flag_get(I2C0, I2C_FLAG_STPDET) && (timeout < I2C_TIME_OUT))
|
||||
timeout++;
|
||||
}
|
||||
|
||||
if (found_devices == 0) {
|
||||
// printf("No I2C devices found.\r\n");
|
||||
const char* msg3 = "No I2C devices found.\r\n";
|
||||
for (uint8_t i = 0; msg3[i] != '\0'; i++) {
|
||||
while (usart_flag_get(I2C_DEBUG_UART, USART_FLAG_TBE) == RESET) {}
|
||||
usart_data_transmit(I2C_DEBUG_UART, msg3[i]);
|
||||
}
|
||||
while (usart_flag_get(I2C_DEBUG_UART, USART_FLAG_TC) == RESET) {}
|
||||
} else {
|
||||
// printf("Total %d I2C devices found.\r\n", found_devices);
|
||||
const char* msg4_prefix = "Total ";
|
||||
for (uint8_t i = 0; msg4_prefix[i] != '\0'; i++) {
|
||||
while (usart_flag_get(I2C_DEBUG_UART, USART_FLAG_TBE) == RESET) {}
|
||||
usart_data_transmit(I2C_DEBUG_UART, msg4_prefix[i]);
|
||||
}
|
||||
// 发送设备数量
|
||||
if (found_devices >= 10) {
|
||||
while (usart_flag_get(I2C_DEBUG_UART, USART_FLAG_TBE) == RESET) {}
|
||||
usart_data_transmit(I2C_DEBUG_UART, '0' + (found_devices / 10));
|
||||
}
|
||||
while (usart_flag_get(I2C_DEBUG_UART, USART_FLAG_TBE) == RESET) {}
|
||||
usart_data_transmit(I2C_DEBUG_UART, '0' + (found_devices % 10));
|
||||
const char* msg4_suffix = " I2C devices found.\r\n";
|
||||
for (uint8_t i = 0; msg4_suffix[i] != '\0'; i++) {
|
||||
while (usart_flag_get(I2C_DEBUG_UART, USART_FLAG_TBE) == RESET) {}
|
||||
usart_data_transmit(I2C_DEBUG_UART, msg4_suffix[i]);
|
||||
}
|
||||
while (usart_flag_get(I2C_DEBUG_UART, USART_FLAG_TC) == RESET) {}
|
||||
}
|
||||
}
|
||||
|
||||
i2c_result_t i2c_write_16bits(uint8_t slave_addr, uint8_t reg_addr, uint8_t data[2]) {
|
||||
i2c_state_t state = I2C_STATE_START;
|
||||
uint16_t timeout = 0;
|
||||
uint8_t retry_count = 0;
|
||||
|
||||
/* parameter validation */
|
||||
if (data == NULL || slave_addr > 0x7F) {
|
||||
return I2C_RESULT_INVALID_PARAM;
|
||||
}
|
||||
|
||||
while (retry_count < I2C_MAX_RETRY) {
|
||||
switch (state) {
|
||||
case I2C_STATE_START:
|
||||
timeout = 0;
|
||||
|
||||
/* wait for bus to be idle */
|
||||
while (i2c_flag_get(I2C0, I2C_FLAG_I2CBSY) && (timeout < I2C_TIME_OUT)) {
|
||||
timeout++;
|
||||
}
|
||||
if (timeout >= I2C_TIME_OUT) {
|
||||
state = I2C_STATE_ERROR;
|
||||
break;
|
||||
}
|
||||
|
||||
i2c_start_on_bus(I2C0);
|
||||
timeout = 0;
|
||||
state = I2C_STATE_SEND_ADDRESS;
|
||||
break;
|
||||
|
||||
case I2C_STATE_SEND_ADDRESS:
|
||||
/* wait for start condition to be sent. SBSEND flag */
|
||||
while((!i2c_flag_get(I2C0, I2C_FLAG_SBSEND)) && (timeout < I2C_TIME_OUT)) {
|
||||
timeout++;
|
||||
}
|
||||
if (timeout >= I2C_TIME_OUT) {
|
||||
state = I2C_STATE_ERROR;
|
||||
break;
|
||||
}
|
||||
|
||||
/* send slave address */
|
||||
i2c_master_addressing(I2C0, slave_addr << 1, I2C_TRANSMITTER);
|
||||
timeout = 0;
|
||||
state = I2C_STATE_CLEAR_ADDRESS;
|
||||
break;
|
||||
|
||||
case I2C_STATE_CLEAR_ADDRESS:
|
||||
/* wait for address to be acknowledged.ADDSEND set means i2c slave sends ACK */
|
||||
while ((!i2c_flag_get(I2C0, I2C_FLAG_ADDSEND)) && (!i2c_flag_get(I2C0, I2C_FLAG_AERR)) && (timeout < I2C_TIME_OUT)) {
|
||||
timeout++;
|
||||
}
|
||||
if (timeout >= I2C_TIME_OUT) {
|
||||
state = I2C_STATE_ERROR;
|
||||
break;
|
||||
} else if (i2c_flag_get(I2C0, I2C_FLAG_ADDSEND))
|
||||
{
|
||||
i2c_flag_clear(I2C0, I2C_FLAG_ADDSEND);
|
||||
timeout =0;
|
||||
state = I2C_STATE_TRANSMIT_REG;
|
||||
break;
|
||||
} else {
|
||||
i2c_flag_clear(I2C0, I2C_FLAG_AERR);
|
||||
timeout =0;
|
||||
#ifdef DEBUG_VERBOES
|
||||
printf("IIC write failed for Error Slave Address. \n");
|
||||
#endif
|
||||
return I2C_RESULT_NACK;
|
||||
}
|
||||
|
||||
case I2C_STATE_TRANSMIT_REG:
|
||||
/* wait until the transmit data buffer is empty */
|
||||
while ((!i2c_flag_get(I2C0, I2C_FLAG_TBE)) && (timeout < I2C_TIME_OUT)) {
|
||||
timeout++;
|
||||
}
|
||||
if (timeout >= I2C_TIME_OUT) {
|
||||
state = I2C_STATE_ERROR;
|
||||
break;
|
||||
}
|
||||
|
||||
/* send register address */
|
||||
i2c_data_transmit(I2C0, reg_addr);
|
||||
timeout = 0;
|
||||
state = I2C_STATE_TRANSMIT_DATA;
|
||||
break;
|
||||
|
||||
case I2C_STATE_TRANSMIT_DATA:
|
||||
/* wait until the transmit data buffer is empty */
|
||||
while ((!i2c_flag_get(I2C0, I2C_FLAG_TBE)) && (timeout < I2C_TIME_OUT)) {
|
||||
timeout++;
|
||||
}
|
||||
if (timeout >= I2C_TIME_OUT) {
|
||||
state = I2C_STATE_ERROR;
|
||||
break;
|
||||
}
|
||||
|
||||
/* send register MSB value */
|
||||
i2c_data_transmit(I2C0, data[0]);
|
||||
timeout = 0;
|
||||
|
||||
/* wait until the transmit data buffer is empty */
|
||||
while ((!i2c_flag_get(I2C0, I2C_FLAG_TBE)) && (timeout < I2C_TIME_OUT)) {
|
||||
timeout++;
|
||||
}
|
||||
if (timeout >= I2C_TIME_OUT) {
|
||||
state = I2C_STATE_ERROR;
|
||||
break;
|
||||
}
|
||||
|
||||
if (i2c_flag_get(I2C0, I2C_FLAG_AERR)) {
|
||||
i2c_stop_on_bus(I2C0);
|
||||
return I2C_RESULT_NACK;
|
||||
} else if (i2c_flag_get(I2C0, I2C_FLAG_BERR) || i2c_flag_get(I2C0, I2C_FLAG_LOSTARB)) {
|
||||
// 可按需清标志
|
||||
i2c_stop_on_bus(I2C0);
|
||||
return I2C_RESULT_ERROR;
|
||||
}
|
||||
|
||||
/* send register LSB value */
|
||||
i2c_data_transmit(I2C0, data[1]);
|
||||
timeout = 0;
|
||||
|
||||
/* wait until BTC bit is set */
|
||||
while (!i2c_flag_get(I2C0, I2C_FLAG_BTC) && (timeout < I2C_TIME_OUT)) {
|
||||
timeout++;
|
||||
}
|
||||
if (timeout >= I2C_TIME_OUT) {
|
||||
state = I2C_STATE_ERROR;
|
||||
break;
|
||||
}
|
||||
|
||||
state = I2C_STATE_STOP;
|
||||
break;
|
||||
|
||||
case I2C_STATE_STOP:
|
||||
/* send a stop condition to I2C bus */
|
||||
i2c_stop_on_bus(I2C0);
|
||||
|
||||
timeout = 0;
|
||||
while ((I2C_CTL0(I2C0) & I2C_CTL0_STOP) && (timeout < I2C_TIME_OUT)) {
|
||||
timeout++;
|
||||
}
|
||||
if (timeout >= I2C_TIME_OUT) {
|
||||
state = I2C_STATE_ERROR;
|
||||
break;
|
||||
}
|
||||
|
||||
/* i2c master sends STOP signal successfully */
|
||||
/* success */
|
||||
return I2C_RESULT_SUCCESS;
|
||||
|
||||
case I2C_STATE_ERROR:
|
||||
/* send a stop condition to I2C bus */
|
||||
i2c_stop_on_bus(I2C0);
|
||||
|
||||
timeout = 0;
|
||||
while ((I2C_CTL0(I2C0) & I2C_CTL0_STOP) && (timeout < I2C_TIME_OUT)) {
|
||||
timeout++;
|
||||
}
|
||||
if (timeout >= I2C_TIME_OUT) {
|
||||
return I2C_RESULT_ERROR;
|
||||
}
|
||||
|
||||
i2c_flag_clear(I2C0, I2C_FLAG_AERR);
|
||||
i2c_flag_clear(I2C0, I2C_FLAG_BERR);
|
||||
i2c_flag_clear(I2C0, I2C_FLAG_LOSTARB);
|
||||
|
||||
retry_count ++;
|
||||
if (retry_count >= I2C_MAX_RETRY)
|
||||
{
|
||||
#ifdef DEBUG_VERBOES
|
||||
printf("IIC write failed after %d retries\n", I2C_MAX_RETRY);
|
||||
#endif
|
||||
return I2C_RESULT_ERROR;
|
||||
}
|
||||
|
||||
/* reset state machine for retry */
|
||||
state = I2C_STATE_START;
|
||||
timeout = 0;
|
||||
|
||||
/* small delay before retry */
|
||||
delay_10us(10);
|
||||
break;
|
||||
|
||||
default:
|
||||
state = I2C_STATE_START;
|
||||
break;
|
||||
}
|
||||
}
|
||||
return I2C_RESULT_TIMEOUT;
|
||||
}
|
||||
|
||||
i2c_result_t i2c_read_16bits(uint8_t slave_addr, uint8_t reg_addr, uint8_t *data) {
|
||||
i2c_state_t state = I2C_STATE_START;
|
||||
uint16_t timeout = 0;
|
||||
uint8_t retry_count = 0;
|
||||
bool write_phase = true;
|
||||
|
||||
// 参数检查:防止空指针和非法地址
|
||||
if (data == NULL || slave_addr > 0x7F) {
|
||||
return I2C_RESULT_INVALID_PARAM;
|
||||
}
|
||||
|
||||
/* enable acknowledge */
|
||||
i2c_ack_config(I2C0, I2C_ACK_ENABLE);
|
||||
|
||||
while (retry_count < (uint8_t)I2C_MAX_RETRY) {
|
||||
switch (state) {
|
||||
case I2C_STATE_START:
|
||||
timeout = 0;
|
||||
|
||||
// wait for bus to be idle
|
||||
while (i2c_flag_get(I2C0, I2C_FLAG_I2CBSY) && (timeout < I2C_TIME_OUT)) {
|
||||
timeout++;
|
||||
}
|
||||
if (timeout >= I2C_TIME_OUT) {
|
||||
state = I2C_STATE_ERROR;
|
||||
break;
|
||||
}
|
||||
|
||||
// send start condition
|
||||
i2c_start_on_bus(I2C0);
|
||||
state = I2C_STATE_SEND_ADDRESS;
|
||||
timeout = 0;
|
||||
break;
|
||||
|
||||
case I2C_STATE_SEND_ADDRESS:
|
||||
/* wait for start condition to be sent */
|
||||
while ((!i2c_flag_get(I2C0, I2C_FLAG_SBSEND)) && (timeout < I2C_TIME_OUT)) {
|
||||
timeout++;
|
||||
}
|
||||
if (timeout >= I2C_TIME_OUT) {
|
||||
state = I2C_STATE_ERROR;
|
||||
break;
|
||||
}
|
||||
|
||||
// send slave address
|
||||
if (write_phase) {
|
||||
/* write phase: send address with write bit */
|
||||
i2c_master_addressing(I2C0, (slave_addr << 1), I2C_TRANSMITTER);
|
||||
} else {
|
||||
/* read phase: send address with read bit */
|
||||
i2c_master_addressing(I2C0, (slave_addr << 1) | 0x01, I2C_RECEIVER);
|
||||
}
|
||||
|
||||
state = I2C_STATE_CLEAR_ADDRESS;
|
||||
timeout = 0;
|
||||
break;
|
||||
|
||||
case I2C_STATE_CLEAR_ADDRESS:
|
||||
/* wait for address to be acknowledged */
|
||||
while ((!i2c_flag_get(I2C0, I2C_FLAG_ADDSEND)) && (timeout < I2C_TIME_OUT)) {
|
||||
timeout++;
|
||||
}
|
||||
if (timeout >= I2C_TIME_OUT) {
|
||||
state = I2C_STATE_ERROR;
|
||||
break;
|
||||
}
|
||||
|
||||
if (write_phase) {
|
||||
/* clear address flag (write phase) */
|
||||
i2c_flag_clear(I2C0, I2C_FLAG_ADDSEND);
|
||||
state = I2C_STATE_TRANSMIT_DATA;
|
||||
} else {
|
||||
/* READ phase for 2 bytes: set POS=NEXT and disable ACK BEFORE clearing ADDR */
|
||||
i2c_ackpos_config(I2C0, I2C_ACKPOS_NEXT);
|
||||
i2c_ack_config(I2C0, I2C_ACK_DISABLE);
|
||||
|
||||
/* now clear address flag to release SCL and enter data phase */
|
||||
i2c_flag_clear(I2C0, I2C_FLAG_ADDSEND);
|
||||
|
||||
state = I2C_STATE_RECEIVE_DATA;
|
||||
}
|
||||
|
||||
timeout = 0;
|
||||
break;
|
||||
|
||||
case I2C_STATE_TRANSMIT_DATA:
|
||||
/* wait for transmit buffer to be empty */
|
||||
while ((!i2c_flag_get(I2C0, I2C_FLAG_TBE)) && (timeout < I2C_TIME_OUT)) {
|
||||
timeout++;
|
||||
}
|
||||
if (timeout >= I2C_TIME_OUT) {
|
||||
state = I2C_STATE_ERROR;
|
||||
break;
|
||||
}
|
||||
|
||||
/* send register address */
|
||||
i2c_data_transmit(I2C0, reg_addr);
|
||||
state = I2C_STATE_RESTART;
|
||||
timeout = 0;
|
||||
break;
|
||||
|
||||
case I2C_STATE_RESTART:
|
||||
/* wait for byte transfer complete BTC: Bit Transfer Complete */
|
||||
while ((!i2c_flag_get(I2C0, I2C_FLAG_BTC)) && (timeout < I2C_TIME_OUT)) {
|
||||
timeout++;
|
||||
}
|
||||
if (timeout >= I2C_TIME_OUT) {
|
||||
state = I2C_STATE_ERROR;
|
||||
break;
|
||||
}
|
||||
|
||||
/* generate repeated start condition */
|
||||
i2c_start_on_bus(I2C0);
|
||||
|
||||
/* wait for repeated start condition to be sent */
|
||||
timeout = 0;
|
||||
while ((!i2c_flag_get(I2C0, I2C_FLAG_SBSEND)) && (timeout < I2C_TIME_OUT)) {
|
||||
timeout++;
|
||||
}
|
||||
if (timeout >= I2C_TIME_OUT) {
|
||||
state = I2C_STATE_ERROR;
|
||||
break;
|
||||
}
|
||||
|
||||
/* send slave address with read bit (R/W bit is set by library) */
|
||||
i2c_master_addressing(I2C0, (slave_addr << 1), I2C_RECEIVER);
|
||||
|
||||
/* switch to read phase */
|
||||
write_phase = false;
|
||||
state = I2C_STATE_CLEAR_ADDRESS;
|
||||
timeout = 0;
|
||||
break;
|
||||
|
||||
case I2C_STATE_RECEIVE_DATA:
|
||||
/* Wait for BTC (both bytes received) */
|
||||
while ((!i2c_flag_get(I2C0, I2C_FLAG_BTC)) && (timeout < I2C_TIME_OUT)) {
|
||||
timeout++;
|
||||
}
|
||||
if (timeout >= I2C_TIME_OUT) {
|
||||
state = I2C_STATE_ERROR;
|
||||
break;
|
||||
}
|
||||
|
||||
/* Send STOP before reading the last two bytes */
|
||||
i2c_stop_on_bus(I2C0);
|
||||
|
||||
/* Read the two bytes back-to-back */
|
||||
data[0] = i2c_data_receive(I2C0);
|
||||
data[1] = i2c_data_receive(I2C0);
|
||||
|
||||
state = I2C_STATE_STOP;
|
||||
break;
|
||||
|
||||
case I2C_STATE_STOP:
|
||||
/* wait for stop condition to complete */
|
||||
while ((I2C_CTL0(I2C0) & I2C_CTL0_STOP) && (timeout < I2C_TIME_OUT)) {
|
||||
timeout++;
|
||||
}
|
||||
if (timeout >= I2C_TIME_OUT) {
|
||||
state = I2C_STATE_ERROR;
|
||||
break;
|
||||
}
|
||||
|
||||
/* i2c master sends STOP signal successfully */
|
||||
/* success */
|
||||
return I2C_RESULT_SUCCESS;
|
||||
|
||||
case I2C_STATE_ERROR:
|
||||
/* send stop condition to release bus */
|
||||
i2c_stop_on_bus(I2C0);
|
||||
|
||||
retry_count++;
|
||||
if (retry_count >= I2C_MAX_RETRY) {
|
||||
#ifdef DEBUG_VERBOES
|
||||
printf("IIC read failed after %d retries\n", I2C_RETRY_MAX);
|
||||
#endif
|
||||
return I2C_RESULT_ERROR;
|
||||
}
|
||||
|
||||
/* reset state machine for retry */
|
||||
state = I2C_STATE_START;
|
||||
write_phase = true;
|
||||
timeout = 0;
|
||||
|
||||
/* small delay before retry */
|
||||
delay_10us(10);
|
||||
break;
|
||||
|
||||
default:
|
||||
state = I2C_STATE_START;
|
||||
break;
|
||||
}
|
||||
}
|
||||
return I2C_RESULT_TIMEOUT;
|
||||
}
|
||||
|
||||
#ifdef DEBUG_VERBOSE
|
||||
/*!
|
||||
\brief get status string for debugging
|
||||
\param[in] status: i2c_status_t value
|
||||
\param[out] none
|
||||
\retval const char* status string
|
||||
*/
|
||||
const char* i2c_get_status_string(i2c_result_t status) {
|
||||
switch (status) {
|
||||
case I2C_RESULT_SUCCESS:
|
||||
return "SUCCESS";
|
||||
case I2C_RESULT_TIMEOUT:
|
||||
return "TIMEOUT";
|
||||
case I2C_RESULT_NACK:
|
||||
return "NACK";
|
||||
case I2C_RESULT_BUS_BUSY:
|
||||
return "BUS_BUSY";
|
||||
case I2C_RESULT_ERROR:
|
||||
return "ERROR";
|
||||
case I2C_RESULT_INVALID_PARAM:
|
||||
return "INVALID_PARAM";
|
||||
default:
|
||||
return "UNKNOWN";
|
||||
}
|
||||
}
|
||||
#endif
|
57
Src/led.c
Normal file
57
Src/led.c
Normal file
@@ -0,0 +1,57 @@
|
||||
#include "led.h"
|
||||
|
||||
/**
|
||||
* @brief LED心跳指示灯功能
|
||||
* @details 实现类似心跳的LED闪烁模式:快闪两次然后暂停
|
||||
* 适合在SysTick中断中调用,通过计数器控制闪烁节拍
|
||||
* @note 假设SysTick中断频率为1ms,心跳周期约为2秒
|
||||
* 心跳模式:亮200ms->灭200ms->亮200ms->灭1400ms(循环)
|
||||
*/
|
||||
void led_heart_beat(void)
|
||||
{
|
||||
static uint16_t heart_beat_counter = 0;
|
||||
|
||||
// 心跳周期:2000ms (假设SysTick为1ms中断)
|
||||
// 模式:亮200ms -> 灭200ms -> 亮200ms -> 灭1400ms
|
||||
heart_beat_counter++;
|
||||
|
||||
if (heart_beat_counter <= 200) {
|
||||
// 第一次亮:0-200ms
|
||||
led_on();
|
||||
}
|
||||
else if (heart_beat_counter <= 400) {
|
||||
// 第一次灭:200-400ms
|
||||
led_off();
|
||||
}
|
||||
else if (heart_beat_counter <= 600) {
|
||||
// 第二次亮:400-600ms
|
||||
led_on();
|
||||
}
|
||||
else if (heart_beat_counter <= 2000) {
|
||||
// 长时间灭:600-2000ms
|
||||
led_off();
|
||||
}
|
||||
else {
|
||||
// 重置计数器,开始新的心跳周期
|
||||
heart_beat_counter = 0;
|
||||
}
|
||||
}
|
||||
|
||||
void led_init(void) {
|
||||
rcu_periph_clock_enable(LED_RCU);
|
||||
gpio_mode_set(LED_PORT, GPIO_MODE_OUTPUT, GPIO_PUPD_NONE, LED_PIN);
|
||||
gpio_output_options_set(LED_PORT, GPIO_OTYPE_PP, GPIO_OSPEED_50MHZ, LED_PIN);
|
||||
gpio_bit_set(LED_PORT, LED_PIN);
|
||||
}
|
||||
|
||||
void led_on(void) {
|
||||
gpio_bit_reset(LED_PORT, LED_PIN);
|
||||
}
|
||||
|
||||
void led_off(void) {
|
||||
gpio_bit_set(LED_PORT, LED_PIN);
|
||||
}
|
||||
|
||||
void led_toggle(void) {
|
||||
gpio_bit_toggle(LED_PORT, LED_PIN);
|
||||
}
|
83
Src/main.c
Normal file
83
Src/main.c
Normal file
@@ -0,0 +1,83 @@
|
||||
/*!
|
||||
\file main.c
|
||||
\brief running LED
|
||||
|
||||
\version 2025-02-10, V2.4.0, demo for GD32E23x
|
||||
*/
|
||||
|
||||
/*
|
||||
Copyright (c) 2025, GigaDevice Semiconductor Inc.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without modification,
|
||||
are permitted provided that the following conditions are met:
|
||||
|
||||
1. Redistributions of source code must retain the above copyright notice, this
|
||||
list of conditions and the following disclaimer.
|
||||
2. Redistributions in binary form must reproduce the above copyright notice,
|
||||
this list of conditions and the following disclaimer in the documentation
|
||||
and/or other materials provided with the distribution.
|
||||
3. Neither the name of the copyright holder nor the names of its contributors
|
||||
may be used to endorse or promote products derived from this software without
|
||||
specific prior written permission.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
||||
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
||||
IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
|
||||
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
||||
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
||||
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||||
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
|
||||
OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#include "gd32e23x.h"
|
||||
#include "systick.h"
|
||||
#include "uart.h"
|
||||
#include "led.h"
|
||||
#include "command.h"
|
||||
#include <stdio.h>
|
||||
#include "i2c.h"
|
||||
#include "board_config.h"
|
||||
|
||||
/*!
|
||||
\brief main function
|
||||
\param[in] none
|
||||
\param[out] none
|
||||
\retval none
|
||||
*/
|
||||
int main(void)
|
||||
{
|
||||
|
||||
setbuf(stdout, NULL);
|
||||
systick_config();
|
||||
rs485_init();
|
||||
|
||||
led_init();
|
||||
|
||||
#ifdef DEBUG_VERBOSE
|
||||
char hello_world[] = {"Hello World!\r\n"};
|
||||
|
||||
for (uint8_t i = 0; i < sizeof(hello_world); i++)
|
||||
{
|
||||
while (usart_flag_get(RS485_PHY, USART_FLAG_TBE) == RESET) {}
|
||||
usart_data_transmit(RS485_PHY, hello_world[i]);
|
||||
}
|
||||
|
||||
while (usart_flag_get(RS485_PHY, USART_FLAG_TC) == RESET) {}
|
||||
#endif
|
||||
|
||||
i2c_config();
|
||||
|
||||
#ifdef DEBUG_VERBOSE
|
||||
i2c_scan();
|
||||
|
||||
i2c_bus_reset();
|
||||
#endif
|
||||
|
||||
while(1){
|
||||
command_process();
|
||||
delay_ms(10);
|
||||
}
|
||||
}
|
170
Src/syscalls.c
Normal file
170
Src/syscalls.c
Normal file
@@ -0,0 +1,170 @@
|
||||
/* Support files for GNU libc. Files in the system namespace go here.
|
||||
Files in the C namespace (ie those that do not start with an
|
||||
underscore) go in .c. */
|
||||
|
||||
#include <_ansi.h>
|
||||
#include <sys/types.h>
|
||||
#include <sys/stat.h>
|
||||
#include <sys/fcntl.h>
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include <time.h>
|
||||
#include <sys/time.h>
|
||||
#include <sys/times.h>
|
||||
#include <errno.h>
|
||||
#include <reent.h>
|
||||
#include <unistd.h>
|
||||
#include <sys/wait.h>
|
||||
#include "gd32e23x_usart.h"
|
||||
|
||||
#undef errno
|
||||
extern int errno;
|
||||
|
||||
extern int __io_putchar(int ch) __attribute__((weak));
|
||||
extern int __io_getchar(void) __attribute__((weak));
|
||||
|
||||
caddr_t _sbrk(int incr)
|
||||
{
|
||||
extern char _end[];
|
||||
static char *curbrk = _end;
|
||||
|
||||
if ((curbrk + incr < _end))
|
||||
return NULL - 1;
|
||||
|
||||
curbrk += incr;
|
||||
return curbrk - incr;
|
||||
}
|
||||
|
||||
/*
|
||||
* _gettimeofday primitive (Stub function)
|
||||
* */
|
||||
int _gettimeofday (struct timeval * tp, struct timezone * tzp)
|
||||
{
|
||||
/* Return fixed data for the timezone. */
|
||||
if (tzp)
|
||||
{
|
||||
tzp->tz_minuteswest = 0;
|
||||
tzp->tz_dsttime = 0;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
void initialise_monitor_handles()
|
||||
{
|
||||
}
|
||||
|
||||
int _getpid(void)
|
||||
{
|
||||
return 1;
|
||||
}
|
||||
|
||||
int _kill(int pid, int sig)
|
||||
{
|
||||
errno = EINVAL;
|
||||
return -1;
|
||||
}
|
||||
|
||||
void _exit (int status)
|
||||
{
|
||||
_kill(status, -1);
|
||||
while (1) {}
|
||||
}
|
||||
|
||||
int _write(int file, char *ptr, int len)
|
||||
{
|
||||
int DataIdx;
|
||||
|
||||
for (DataIdx = 0; DataIdx < len; DataIdx++)
|
||||
{
|
||||
__io_putchar( *ptr++ );
|
||||
}
|
||||
return len;
|
||||
}
|
||||
|
||||
int _close(int file)
|
||||
{
|
||||
return -1;
|
||||
}
|
||||
|
||||
int _fstat(int file, struct stat *st)
|
||||
{
|
||||
st->st_mode = S_IFCHR;
|
||||
return 0;
|
||||
}
|
||||
|
||||
int _isatty(int file)
|
||||
{
|
||||
return 1;
|
||||
}
|
||||
|
||||
int _lseek(int file, int ptr, int dir)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
int _read(int file, char *ptr, int len)
|
||||
{
|
||||
int DataIdx;
|
||||
|
||||
for (DataIdx = 0; DataIdx < len; DataIdx++)
|
||||
{
|
||||
*ptr++ = __io_getchar();
|
||||
}
|
||||
|
||||
return len;
|
||||
}
|
||||
|
||||
int _open(char *path, int flags, ...)
|
||||
{
|
||||
/* Pretend like we always fail */
|
||||
return -1;
|
||||
}
|
||||
|
||||
int _wait(int *status)
|
||||
{
|
||||
errno = ECHILD;
|
||||
return -1;
|
||||
}
|
||||
|
||||
int _unlink(char *name)
|
||||
{
|
||||
errno = ENOENT;
|
||||
return -1;
|
||||
}
|
||||
|
||||
int _times(struct tms *buf)
|
||||
{
|
||||
return -1;
|
||||
}
|
||||
|
||||
int _stat(char *file, struct stat *st)
|
||||
{
|
||||
st->st_mode = S_IFCHR;
|
||||
return 0;
|
||||
}
|
||||
|
||||
int _link(char *old, char *new)
|
||||
{
|
||||
errno = EMLINK;
|
||||
return -1;
|
||||
}
|
||||
|
||||
int _fork(void)
|
||||
{
|
||||
errno = EAGAIN;
|
||||
return -1;
|
||||
}
|
||||
|
||||
int _execve(char *name, char **argv, char **env)
|
||||
{
|
||||
errno = ENOMEM;
|
||||
return -1;
|
||||
}
|
||||
|
||||
// USART0 printf重定向实现
|
||||
int __io_putchar(int ch) {
|
||||
// 等待发送缓冲区空
|
||||
while (usart_flag_get(USART0, USART_FLAG_TBE) == RESET) {}
|
||||
usart_data_transmit(USART0, (uint8_t)ch);
|
||||
return ch;
|
||||
}
|
451
Src/system_gd32e23x.c
Normal file
451
Src/system_gd32e23x.c
Normal file
@@ -0,0 +1,451 @@
|
||||
/*!
|
||||
\file system_gd32e23x.c
|
||||
\brief CMSIS Cortex-M23 Device Peripheral Access Layer Source File for
|
||||
GD32E23x Device Series
|
||||
*/
|
||||
|
||||
/* Copyright (c) 2012 ARM LIMITED
|
||||
Copyright (c) 2025, GigaDevice Semiconductor Inc.
|
||||
|
||||
All rights reserved.
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are met:
|
||||
- Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
- Redistributions in binary form must reproduce the above copyright
|
||||
notice, this list of conditions and the following disclaimer in the
|
||||
documentation and/or other materials provided with the distribution.
|
||||
- Neither the name of ARM nor the names of its contributors may be used
|
||||
to endorse or promote products derived from this software without
|
||||
specific prior written permission.
|
||||
*
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDERS AND CONTRIBUTORS BE
|
||||
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||||
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||||
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
POSSIBILITY OF SUCH DAMAGE.
|
||||
---------------------------------------------------------------------------*/
|
||||
|
||||
/* This file refers the CMSIS standard, some adjustments are made according to GigaDevice chips */
|
||||
|
||||
#include "gd32e23x.h"
|
||||
|
||||
/* system frequency define */
|
||||
#define __IRC8M (IRC8M_VALUE) /* internal 8 MHz RC oscillator frequency */
|
||||
#define __HXTAL (HXTAL_VALUE) /* high speed crystal oscillator frequency */
|
||||
#define __SYS_OSC_CLK (__IRC8M) /* main oscillator frequency */
|
||||
|
||||
#define VECT_TAB_OFFSET (uint32_t)0x00 /* vector table base offset */
|
||||
|
||||
/* select a system clock by uncommenting the following line */
|
||||
//#define __SYSTEM_CLOCK_8M_HXTAL (__HXTAL)
|
||||
//#define __SYSTEM_CLOCK_8M_IRC8M (__IRC8M)
|
||||
// #define __SYSTEM_CLOCK_72M_PLL_HXTAL (uint32_t)(72000000)
|
||||
#define __SYSTEM_CLOCK_72M_PLL_IRC8M_DIV2 (uint32_t)(72000000)
|
||||
|
||||
/* The following is to prevent Vcore fluctuations caused by frequency switching.
|
||||
It is strongly recommended to include it to avoid issues caused by self-removal.
|
||||
*/
|
||||
#define RCU_MODIFY(__delay) do{ \
|
||||
volatile uint32_t i,reg; \
|
||||
if(0 != __delay){ \
|
||||
reg = RCU_CFG0; \
|
||||
reg &= ~(RCU_CFG0_AHBPSC); \
|
||||
/* CK_AHB = SYSCLK/2 */ \
|
||||
reg |= RCU_AHB_CKSYS_DIV2; \
|
||||
RCU_CFG0 = reg; \
|
||||
for(i=0; i<__delay; i++){ \
|
||||
} \
|
||||
reg = RCU_CFG0; \
|
||||
reg &= ~(RCU_CFG0_AHBPSC); \
|
||||
reg |= RCU_AHB_CKSYS_DIV4; \
|
||||
/* CK_AHB = SYSCLK/4 */ \
|
||||
RCU_CFG0 = reg; \
|
||||
for(i=0; i<__delay; i++){ \
|
||||
} \
|
||||
} \
|
||||
}while(0)
|
||||
|
||||
#define SEL_IRC8M 0x00
|
||||
#define SEL_HXTAL 0x01
|
||||
#define SEL_PLL 0x02
|
||||
|
||||
/* set the system clock frequency and declare the system clock configuration function */
|
||||
#ifdef __SYSTEM_CLOCK_8M_HXTAL
|
||||
uint32_t SystemCoreClock = __SYSTEM_CLOCK_8M_HXTAL;
|
||||
static void system_clock_8m_hxtal(void);
|
||||
|
||||
#elif defined (__SYSTEM_CLOCK_72M_PLL_HXTAL)
|
||||
uint32_t SystemCoreClock = __SYSTEM_CLOCK_72M_PLL_HXTAL;
|
||||
static void system_clock_72m_hxtal(void);
|
||||
|
||||
#elif defined (__SYSTEM_CLOCK_72M_PLL_IRC8M_DIV2)
|
||||
uint32_t SystemCoreClock = __SYSTEM_CLOCK_72M_PLL_IRC8M_DIV2;
|
||||
static void system_clock_72m_irc8m(void);
|
||||
|
||||
#else
|
||||
uint32_t SystemCoreClock = __SYSTEM_CLOCK_8M_IRC8M;
|
||||
static void system_clock_8m_irc8m(void);
|
||||
#endif /* __SYSTEM_CLOCK_8M_HXTAL */
|
||||
|
||||
/* configure the system clock */
|
||||
static void system_clock_config(void);
|
||||
|
||||
/* software delay to prevent the impact of Vcore fluctuations.
|
||||
It is strongly recommended to include it to avoid issues caused by self-removal. */
|
||||
static void _soft_delay_(uint32_t time)
|
||||
{
|
||||
__IO uint32_t i;
|
||||
for(i=0; i<time*10; i++){
|
||||
}
|
||||
}
|
||||
|
||||
/*!
|
||||
\brief setup the microcontroller system, initialize the system
|
||||
\param[in] none
|
||||
\param[out] none
|
||||
\retval none
|
||||
*/
|
||||
void SystemInit (void)
|
||||
{
|
||||
/* enable IRC8M */
|
||||
RCU_CTL0 |= RCU_CTL0_IRC8MEN;
|
||||
while(0U == (RCU_CTL0 & RCU_CTL0_IRC8MSTB)){
|
||||
}
|
||||
if(((RCU_CFG0 & RCU_CFG0_SCSS) == RCU_SCSS_PLL)){
|
||||
RCU_MODIFY(0x80);
|
||||
}
|
||||
RCU_CFG0 &= ~RCU_CFG0_SCS;
|
||||
_soft_delay_(100);
|
||||
RCU_CTL0 &= ~(RCU_CTL0_HXTALEN | RCU_CTL0_CKMEN | RCU_CTL0_PLLEN | RCU_CTL0_HXTALBPS);
|
||||
/* reset RCU */
|
||||
RCU_CFG0 &= ~(RCU_CFG0_SCS | RCU_CFG0_AHBPSC | RCU_CFG0_APB1PSC | RCU_CFG0_APB2PSC |\
|
||||
RCU_CFG0_ADCPSC | RCU_CFG0_CKOUTSEL | RCU_CFG0_CKOUTDIV | RCU_CFG0_PLLDV);
|
||||
RCU_CFG0 &= ~(RCU_CFG0_PLLSEL | RCU_CFG0_PLLMF | RCU_CFG0_PLLMF4 | RCU_CFG0_PLLDV);
|
||||
RCU_CFG1 &= ~(RCU_CFG1_PREDV);
|
||||
RCU_CFG2 &= ~(RCU_CFG2_USART0SEL | RCU_CFG2_ADCSEL);
|
||||
RCU_CFG2 &= ~RCU_CFG2_IRC28MDIV;
|
||||
RCU_CFG2 &= ~RCU_CFG2_ADCPSC2;
|
||||
RCU_CTL1 &= ~RCU_CTL1_IRC28MEN;
|
||||
RCU_INT = 0x00000000U;
|
||||
|
||||
/* configure system clock */
|
||||
system_clock_config();
|
||||
|
||||
#ifdef VECT_TAB_SRAM
|
||||
nvic_vector_table_set(NVIC_VECTTAB_RAM,VECT_TAB_OFFSET);
|
||||
#else
|
||||
nvic_vector_table_set(NVIC_VECTTAB_FLASH,VECT_TAB_OFFSET);
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
\brief configure the system clock
|
||||
\param[in] none
|
||||
\param[out] none
|
||||
\retval none
|
||||
*/
|
||||
static void system_clock_config(void)
|
||||
{
|
||||
#ifdef __SYSTEM_CLOCK_8M_HXTAL
|
||||
system_clock_8m_hxtal();
|
||||
#elif defined (__SYSTEM_CLOCK_72M_PLL_HXTAL)
|
||||
system_clock_72m_hxtal();
|
||||
#elif defined (__SYSTEM_CLOCK_72M_PLL_IRC8M_DIV2)
|
||||
system_clock_72m_irc8m();
|
||||
#elif defined (__SYSTEM_CLOCK_72M_PLL_IRC48M_DIV2)
|
||||
system_clock_72m_irc48m();
|
||||
#else
|
||||
system_clock_8m_irc8m();
|
||||
#endif /* __SYSTEM_CLOCK_8M_HXTAL */
|
||||
}
|
||||
|
||||
#ifdef __SYSTEM_CLOCK_8M_HXTAL
|
||||
/*!
|
||||
\brief configure the system clock to 8M by HXTAL
|
||||
\param[in] none
|
||||
\param[out] none
|
||||
\retval none
|
||||
*/
|
||||
static void system_clock_8m_hxtal(void)
|
||||
{
|
||||
uint32_t timeout = 0U;
|
||||
uint32_t stab_flag = 0U;
|
||||
__IO uint32_t reg_temp;
|
||||
|
||||
/* enable HXTAL */
|
||||
RCU_CTL0 |= RCU_CTL0_HXTALEN;
|
||||
|
||||
/* wait until HXTAL is stable or the startup time is longer than HXTAL_STARTUP_TIMEOUT */
|
||||
do{
|
||||
timeout++;
|
||||
stab_flag = (RCU_CTL0 & RCU_CTL0_HXTALSTB);
|
||||
}
|
||||
while((0U == stab_flag) && (HXTAL_STARTUP_TIMEOUT != timeout));
|
||||
/* if fail */
|
||||
if(0U == (RCU_CTL0 & RCU_CTL0_HXTALSTB)){
|
||||
while(1){
|
||||
}
|
||||
}
|
||||
|
||||
/* HXTAL is stable */
|
||||
/* AHB = SYSCLK */
|
||||
RCU_CFG0 |= RCU_AHB_CKSYS_DIV1;
|
||||
/* APB2 = AHB */
|
||||
RCU_CFG0 |= RCU_APB2_CKAHB_DIV1;
|
||||
/* APB1 = AHB */
|
||||
RCU_CFG0 |= RCU_APB1_CKAHB_DIV1;
|
||||
|
||||
reg_temp = RCU_CFG0;
|
||||
/* select HXTAL as system clock */
|
||||
reg_temp &= ~RCU_CFG0_SCS;
|
||||
reg_temp |= RCU_CKSYSSRC_HXTAL;
|
||||
RCU_CFG0 = reg_temp;
|
||||
|
||||
/* wait until HXTAL is selected as system clock */
|
||||
while(RCU_SCSS_HXTAL != (RCU_CFG0 & RCU_CFG0_SCSS)){
|
||||
}
|
||||
}
|
||||
|
||||
#elif defined (__SYSTEM_CLOCK_72M_PLL_HXTAL)
|
||||
/*!
|
||||
\brief configure the system clock to 72M by PLL which selects HXTAL as its clock source
|
||||
\param[in] none
|
||||
\param[out] none
|
||||
\retval none
|
||||
*/
|
||||
static void system_clock_72m_hxtal(void)
|
||||
{
|
||||
uint32_t timeout = 0U;
|
||||
uint32_t stab_flag = 0U;
|
||||
__IO uint32_t reg_temp;
|
||||
|
||||
/* enable HXTAL */
|
||||
RCU_CTL0 |= RCU_CTL0_HXTALEN;
|
||||
|
||||
/* wait until HXTAL is stable or the startup time is longer than HXTAL_STARTUP_TIMEOUT */
|
||||
do{
|
||||
timeout++;
|
||||
stab_flag = (RCU_CTL0 & RCU_CTL0_HXTALSTB);
|
||||
}
|
||||
while((0U == stab_flag) && (HXTAL_STARTUP_TIMEOUT != timeout));
|
||||
/* if fail */
|
||||
if(0U == (RCU_CTL0 & RCU_CTL0_HXTALSTB)){
|
||||
while(1){
|
||||
}
|
||||
}
|
||||
|
||||
FMC_WS = (FMC_WS & (~FMC_WS_WSCNT)) | WS_WSCNT_2;
|
||||
|
||||
/* HXTAL is stable */
|
||||
/* AHB = SYSCLK */
|
||||
RCU_CFG0 |= RCU_AHB_CKSYS_DIV1;
|
||||
/* APB2 = AHB */
|
||||
RCU_CFG0 |= RCU_APB2_CKAHB_DIV1;
|
||||
/* APB1 = AHB */
|
||||
RCU_CFG0 |= RCU_APB1_CKAHB_DIV1;
|
||||
|
||||
/* PLL = HXTAL * 9 = 72 MHz */
|
||||
RCU_CFG0 &= ~(RCU_CFG0_PLLSEL | RCU_CFG0_PLLMF | RCU_CFG0_PLLDV);
|
||||
RCU_CFG0 |= (RCU_PLLSRC_HXTAL | RCU_PLL_MUL9);
|
||||
|
||||
/* enable PLL */
|
||||
RCU_CTL0 |= RCU_CTL0_PLLEN;
|
||||
|
||||
/* wait until PLL is stable */
|
||||
while(0U == (RCU_CTL0 & RCU_CTL0_PLLSTB)){
|
||||
}
|
||||
|
||||
reg_temp = RCU_CFG0;
|
||||
/* select PLL as system clock */
|
||||
reg_temp &= ~RCU_CFG0_SCS;
|
||||
reg_temp |= RCU_CKSYSSRC_PLL;
|
||||
RCU_CFG0 = reg_temp;
|
||||
|
||||
/* wait until PLL is selected as system clock */
|
||||
while(RCU_SCSS_PLL != (RCU_CFG0 & RCU_CFG0_SCSS)){
|
||||
}
|
||||
}
|
||||
|
||||
#elif defined (__SYSTEM_CLOCK_72M_PLL_IRC8M_DIV2)
|
||||
/*!
|
||||
\brief configure the system clock to 72M by PLL which selects IRC8M/2 as its clock source
|
||||
\param[in] none
|
||||
\param[out] none
|
||||
\retval none
|
||||
*/
|
||||
static void system_clock_72m_irc8m(void)
|
||||
{
|
||||
uint32_t timeout = 0U;
|
||||
uint32_t stab_flag = 0U;
|
||||
__IO uint32_t reg_temp;
|
||||
|
||||
/* enable IRC8M */
|
||||
RCU_CTL0 |= RCU_CTL0_IRC8MEN;
|
||||
|
||||
/* wait until IRC8M is stable or the startup time is longer than IRC8M_STARTUP_TIMEOUT */
|
||||
do{
|
||||
timeout++;
|
||||
stab_flag = (RCU_CTL0 & RCU_CTL0_IRC8MSTB);
|
||||
}
|
||||
while((0U == stab_flag) && (IRC8M_STARTUP_TIMEOUT != timeout));
|
||||
|
||||
/* if fail */
|
||||
if(0U == (RCU_CTL0 & RCU_CTL0_IRC8MSTB)){
|
||||
while(1){
|
||||
}
|
||||
}
|
||||
|
||||
FMC_WS = (FMC_WS & (~FMC_WS_WSCNT)) | WS_WSCNT_2;
|
||||
|
||||
/* AHB = SYSCLK */
|
||||
RCU_CFG0 |= RCU_AHB_CKSYS_DIV1;
|
||||
/* APB2 = AHB */
|
||||
RCU_CFG0 |= RCU_APB2_CKAHB_DIV1;
|
||||
/* APB1 = AHB */
|
||||
RCU_CFG0 |= RCU_APB1_CKAHB_DIV1;
|
||||
/* PLL = (IRC8M/2) * 18 = 72 MHz */
|
||||
RCU_CFG0 &= ~(RCU_CFG0_PLLSEL | RCU_CFG0_PLLMF);
|
||||
RCU_CFG0 |= (RCU_PLLSRC_IRC8M_DIV2 | RCU_PLL_MUL18);
|
||||
|
||||
/* enable PLL */
|
||||
RCU_CTL0 |= RCU_CTL0_PLLEN;
|
||||
|
||||
/* wait until PLL is stable */
|
||||
while(0U == (RCU_CTL0 & RCU_CTL0_PLLSTB)){
|
||||
}
|
||||
|
||||
reg_temp = RCU_CFG0;
|
||||
/* select PLL as system clock */
|
||||
reg_temp &= ~RCU_CFG0_SCS;
|
||||
reg_temp |= RCU_CKSYSSRC_PLL;
|
||||
RCU_CFG0 = reg_temp;
|
||||
|
||||
/* wait until PLL is selected as system clock */
|
||||
while(RCU_SCSS_PLL != (RCU_CFG0 & RCU_CFG0_SCSS)){
|
||||
}
|
||||
}
|
||||
|
||||
#else
|
||||
/*!
|
||||
\brief configure the system clock to 8M by IRC8M
|
||||
\param[in] none
|
||||
\param[out] none
|
||||
\retval none
|
||||
*/
|
||||
static void system_clock_8m_irc8m(void)
|
||||
{
|
||||
uint32_t timeout = 0U;
|
||||
uint32_t stab_flag = 0U;
|
||||
__IO uint32_t reg_temp;
|
||||
|
||||
/* enable IRC8M */
|
||||
RCU_CTL0 |= RCU_CTL0_IRC8MEN;
|
||||
|
||||
/* wait until IRC8M is stable or the startup time is longer than IRC8M_STARTUP_TIMEOUT */
|
||||
do{
|
||||
timeout++;
|
||||
stab_flag = (RCU_CTL0 & RCU_CTL0_IRC8MSTB);
|
||||
}
|
||||
while((0U == stab_flag) && (IRC8M_STARTUP_TIMEOUT != timeout));
|
||||
|
||||
/* if fail */
|
||||
if(0U == (RCU_CTL0 & RCU_CTL0_IRC8MSTB)){
|
||||
while(1){
|
||||
}
|
||||
}
|
||||
|
||||
/* AHB = SYSCLK */
|
||||
RCU_CFG0 |= RCU_AHB_CKSYS_DIV1;
|
||||
/* APB2 = AHB */
|
||||
RCU_CFG0 |= RCU_APB2_CKAHB_DIV1;
|
||||
/* APB1 = AHB */
|
||||
RCU_CFG0 |= RCU_APB1_CKAHB_DIV1;
|
||||
|
||||
reg_temp = RCU_CFG0;
|
||||
/* select IRC8M as system clock */
|
||||
reg_temp &= ~RCU_CFG0_SCS;
|
||||
reg_temp |= RCU_CKSYSSRC_IRC8M;
|
||||
RCU_CFG0 = reg_temp;
|
||||
|
||||
/* wait until IRC8M is selected as system clock */
|
||||
while(RCU_SCSS_IRC8M != (RCU_CFG0 & RCU_CFG0_SCSS)){
|
||||
}
|
||||
}
|
||||
#endif /* __SYSTEM_CLOCK_8M_HXTAL */
|
||||
|
||||
/*!
|
||||
\brief update the SystemCoreClock with current core clock retrieved from cpu registers
|
||||
\param[in] none
|
||||
\param[out] none
|
||||
\retval none
|
||||
*/
|
||||
void SystemCoreClockUpdate (void)
|
||||
{
|
||||
uint32_t sws = 0U;
|
||||
uint32_t pllmf = 0U, pllmf4 = 0U, pllsel = 0U, prediv = 0U, idx = 0U, clk_exp = 0U;
|
||||
/* exponent of AHB clock divider */
|
||||
const uint8_t ahb_exp[16] = {0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 6, 7, 8, 9};
|
||||
|
||||
sws = GET_BITS(RCU_CFG0, 2, 3);
|
||||
switch(sws){
|
||||
/* IRC8M is selected as CK_SYS */
|
||||
case SEL_IRC8M:
|
||||
SystemCoreClock = IRC8M_VALUE;
|
||||
break;
|
||||
/* HXTAL is selected as CK_SYS */
|
||||
case SEL_HXTAL:
|
||||
SystemCoreClock = HXTAL_VALUE;
|
||||
break;
|
||||
/* PLL is selected as CK_SYS */
|
||||
case SEL_PLL:
|
||||
/* get the value of PLLMF[3:0] */
|
||||
pllmf = GET_BITS(RCU_CFG0, 18, 21);
|
||||
pllmf4 = GET_BITS(RCU_CFG0, 27, 27);
|
||||
/* high 16 bits */
|
||||
if(1U == pllmf4){
|
||||
pllmf += 17U;
|
||||
}else if(15U == pllmf){
|
||||
pllmf = 16U;
|
||||
} else {
|
||||
pllmf += 2U;
|
||||
}
|
||||
|
||||
/* PLL clock source selection, HXTAL or IRC8M/2 */
|
||||
pllsel = GET_BITS(RCU_CFG0, 16, 16);
|
||||
if(0U != pllsel){
|
||||
prediv = (GET_BITS(RCU_CFG1, 0, 3) + 1U);
|
||||
SystemCoreClock = (HXTAL_VALUE / prediv) * pllmf;
|
||||
} else {
|
||||
SystemCoreClock = (IRC8M_VALUE >> 1) * pllmf;
|
||||
}
|
||||
break;
|
||||
/* IRC8M is selected as CK_SYS */
|
||||
default:
|
||||
SystemCoreClock = IRC8M_VALUE;
|
||||
break;
|
||||
}
|
||||
/* calculate AHB clock frequency */
|
||||
idx = GET_BITS(RCU_CFG0, 4, 7);
|
||||
clk_exp = ahb_exp[idx];
|
||||
SystemCoreClock >>= clk_exp;
|
||||
}
|
||||
|
||||
#ifdef __FIRMWARE_VERSION_DEFINE
|
||||
/*!
|
||||
\brief get firmware version
|
||||
\param[in] none
|
||||
\param[out] none
|
||||
\retval firmware version
|
||||
*/
|
||||
uint32_t gd32e23x_firmware_version_get(void)
|
||||
{
|
||||
return __GD32E23x_STDPERIPH_VERSION;
|
||||
}
|
||||
#endif /* __FIRMWARE_VERSION_DEFINE */
|
118
Src/systick.c
Normal file
118
Src/systick.c
Normal file
@@ -0,0 +1,118 @@
|
||||
/**
|
||||
* ************************************************************************
|
||||
*
|
||||
* @file systick.c
|
||||
* @author GD32
|
||||
* @brief 通过 SysTick 定时器进行微秒级别和毫秒级别的延时函数
|
||||
*
|
||||
* ************************************************************************
|
||||
* @copyright Copyright (c) 2024 GD32
|
||||
* ************************************************************************
|
||||
*/
|
||||
#include "gd32e23x.h"
|
||||
#include "systick.h"
|
||||
|
||||
volatile static uint32_t delay_count = 0;
|
||||
|
||||
/**
|
||||
* ************************************************************************
|
||||
* @brief 配置 SysTick 定时器
|
||||
*
|
||||
*
|
||||
* ************************************************************************
|
||||
*/
|
||||
void systick_config(void)
|
||||
{
|
||||
//设置了 SysTick 定时器的时钟源为 HCLK
|
||||
systick_clksource_set(SYSTICK_CLKSOURCE_HCLK);
|
||||
|
||||
// 配置SysTick为1ms周期中断
|
||||
// 注意:SysTick_Config会自动设置时钟源为HCLK,所以需要使用SystemCoreClock/1000
|
||||
SysTick_Config(SystemCoreClock / 1000U); // 1ms中断
|
||||
NVIC_SetPriority(SysTick_IRQn, 0x00U);
|
||||
}
|
||||
|
||||
/**
|
||||
* ************************************************************************
|
||||
* @brief delay_ms 毫秒延时函数
|
||||
*
|
||||
* @param[in] count 毫秒值
|
||||
*
|
||||
* ************************************************************************
|
||||
*/
|
||||
void delay_10us(uint32_t count)
|
||||
{
|
||||
// 基于系统时钟的简单循环延时
|
||||
// 这是一个粗略的估计,实际延时可能有偏差 实测10.2us
|
||||
uint32_t loops_per_10us = SystemCoreClock / 1700000; // 粗略估计,每10微秒的循环次数
|
||||
|
||||
for(uint32_t i = 0; i < count; i++) {
|
||||
for(volatile uint32_t j = 0; j < loops_per_10us; j++);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* ************************************************************************
|
||||
* @brief delay_ms 毫秒延时函数
|
||||
*
|
||||
* @param[in] count 毫秒值
|
||||
*
|
||||
* ************************************************************************
|
||||
*/
|
||||
void delay_ms(uint32_t count)
|
||||
{
|
||||
delay_count = count; // 设置延时计数
|
||||
while (delay_count != 0U);
|
||||
}
|
||||
|
||||
/**
|
||||
* ************************************************************************
|
||||
* @brief 每个 SysTick 中断调用时,减少延时计数
|
||||
*
|
||||
* @param[in] void
|
||||
*
|
||||
* ************************************************************************
|
||||
*/
|
||||
void delay_decrement(void)
|
||||
{
|
||||
if (delay_count != 0U)
|
||||
{
|
||||
delay_count--;
|
||||
}
|
||||
}
|
||||
|
||||
// /**
|
||||
// * ************************************************************************
|
||||
// * @brief delay_ms_safe 毫秒延时函数(不干扰SysTick中断)
|
||||
// * @details 使用简单循环实现延时,不会重新配置SysTick
|
||||
// * @param[in] count 毫秒值
|
||||
// * ************************************************************************
|
||||
// */
|
||||
// void delay_ms_safe(uint32_t count)
|
||||
// {
|
||||
// // 基于系统时钟的简单循环延时
|
||||
// // 这是一个粗略的估计,实际延时可能有偏差
|
||||
// uint32_t loops_per_ms = SystemCoreClock / 14000; // 粗略估计
|
||||
|
||||
// for(uint32_t i = 0; i < count; i++) {
|
||||
// for(volatile uint32_t j = 0; j < loops_per_ms; j++);
|
||||
// }
|
||||
// }
|
||||
|
||||
// /**
|
||||
// * ************************************************************************
|
||||
// * @brief delay_us_safe 微秒延时函数(不干扰SysTick中断)
|
||||
// * @details 使用简单循环实现延时,不会重新配置SysTick
|
||||
// * @param[in] count 微秒值
|
||||
// * ************************************************************************
|
||||
// */
|
||||
// void delay_us_safe(uint32_t count)
|
||||
// {
|
||||
// // 基于系统时钟的简单循环延时
|
||||
// // 这是一个粗略的估计,实际延时可能有偏差
|
||||
// uint32_t loops_per_us = SystemCoreClock / 22000000; // 粗略估计,每微秒的循环次数
|
||||
|
||||
// for(uint32_t i = 0; i < count; i++) {
|
||||
// for(volatile uint32_t j = 0; j < loops_per_us; j++);
|
||||
// }
|
||||
// }
|
72
Src/uart.c
Normal file
72
Src/uart.c
Normal file
@@ -0,0 +1,72 @@
|
||||
#include "uart.h"
|
||||
#include "gd32e23x_usart.h"
|
||||
#include "gd32e23x_rcu.h"
|
||||
#include "gd32e23x_gpio.h"
|
||||
#include "board_config.h"
|
||||
|
||||
|
||||
void rs485_init(void) {
|
||||
|
||||
#ifndef RS485_MAX13487
|
||||
/* 使能 GPIOA 和 USART0 时钟 */
|
||||
rcu_periph_clock_enable(RS485_GPIO_RCU);
|
||||
rcu_periph_clock_enable(RS485_RCU);
|
||||
|
||||
/* 配置 PA2 为 USART0_TX,PA3 为 USART0_RX */
|
||||
gpio_af_set(RS485_GPIO_PORT, GPIO_AF_1, RS485_TX_PIN | RS485_RX_PIN | RS485_EN_PIN);
|
||||
|
||||
gpio_mode_set(RS485_GPIO_PORT, GPIO_MODE_AF, GPIO_PUPD_PULLUP, RS485_TX_PIN | RS485_RX_PIN);
|
||||
gpio_output_options_set(RS485_GPIO_PORT, GPIO_OTYPE_PP, GPIO_OSPEED_50MHZ, RS485_TX_PIN | RS485_RX_PIN);
|
||||
|
||||
gpio_mode_set(RS485_GPIO_PORT, GPIO_MODE_AF, GPIO_PUPD_NONE, RS485_EN_PIN);
|
||||
gpio_output_options_set(RS485_GPIO_PORT, GPIO_OTYPE_PP, GPIO_OSPEED_50MHZ, RS485_EN_PIN);
|
||||
|
||||
/* 配置波特率、数据位、停止位等 */
|
||||
usart_deinit(RS485_PHY);
|
||||
usart_word_length_set(RS485_PHY, USART_WL_8BIT);
|
||||
usart_stop_bit_set(RS485_PHY, USART_STB_1BIT);
|
||||
usart_parity_config(RS485_PHY, USART_PM_NONE);
|
||||
usart_baudrate_set(RS485_PHY, RS485_BAUDRATE);
|
||||
usart_receive_config(RS485_PHY, USART_RECEIVE_ENABLE);
|
||||
usart_transmit_config(RS485_PHY, USART_TRANSMIT_ENABLE);
|
||||
|
||||
usart_driver_assertime_config(RS485_PHY, 0x01);
|
||||
usart_driver_deassertime_config(RS485_PHY, 0x10);
|
||||
|
||||
usart_rs485_driver_enable(RS485_PHY);
|
||||
|
||||
usart_enable(RS485_PHY);
|
||||
|
||||
nvic_irq_enable(USART0_IRQn, 0);
|
||||
usart_interrupt_enable(RS485_PHY, USART_INT_RBNE);
|
||||
// usart_interrupt_enable(RS485_PHY, USART_INT_IDLE);
|
||||
|
||||
#else
|
||||
rcu_periph_clock_enable(RS485_GPIO_RCU);
|
||||
rcu_periph_clock_enable(RS485_RCU);
|
||||
|
||||
gpio_af_set(RS485_GPIO_PORT, GPIO_AF_1, GPIO_PIN_2 | GPIO_PIN_3);
|
||||
|
||||
/* configure USART Tx&Rx as alternate function push-pull */
|
||||
gpio_mode_set(RS485_GPIO_PORT, GPIO_MODE_AF, GPIO_PUPD_PULLUP, RS485_TX_PIN | RS485_RX_PIN);
|
||||
gpio_output_options_set(RS485_GPIO_PORT, GPIO_OTYPE_PP, GPIO_OSPEED_10MHZ, RS485_TX_PIN | RS485_RX_PIN);
|
||||
|
||||
/* configure RS485 EN Pin */
|
||||
gpio_mode_set(RS485_GPIO_PORT, GPIO_MODE_OUTPUT, GPIO_PUPD_NONE, RS485_EN_PIN);
|
||||
gpio_output_options_set(RS485_GPIO_PORT, GPIO_OTYPE_PP, GPIO_OSPEED_50MHZ, RS485_EN_PIN);
|
||||
gpio_bit_write(RS485_GPIO_PORT, RS485_EN_PIN, SET);
|
||||
|
||||
/* USART configure */
|
||||
usart_deinit(RS485_PHY);
|
||||
usart_baudrate_set(RS485_PHY, RS485_BAUDRATE);
|
||||
usart_receive_config(RS485_PHY, USART_RECEIVE_ENABLE);
|
||||
usart_transmit_config(RS485_PHY, USART_TRANSMIT_ENABLE);
|
||||
|
||||
usart_enable(RS485_PHY);
|
||||
|
||||
nvic_irq_enable(USART0_IRQn, 0);
|
||||
usart_interrupt_enable(RS485_PHY, USART_INT_RBNE);
|
||||
usart_interrupt_enable(RS485_PHY, USART_INT_IDLE);
|
||||
|
||||
#endif // RS485_MAX13487
|
||||
}
|
104
Src/uart_ring_buffer.c
Normal file
104
Src/uart_ring_buffer.c
Normal file
@@ -0,0 +1,104 @@
|
||||
/**
|
||||
* @file uart_ring_buffer.c
|
||||
* @brief 字节环形接收缓冲区的实现。
|
||||
* @details 适用于中断接收(写)与主循环解析(读)的典型串口场景;
|
||||
* 采用“预留一格”区分空/满,最大可用容量为 UART_RX_BUFFER_SIZE-1。
|
||||
* @ingroup RingBuffer
|
||||
*/
|
||||
#include "uart_ring_buffer.h"
|
||||
|
||||
static volatile uint8_t uart_rx_buffer[UART_RX_BUFFER_SIZE];
|
||||
static volatile uint8_t write_index = 0;
|
||||
static volatile uint8_t read_index = 0;
|
||||
static volatile uint32_t dropped_bytes = 0;
|
||||
|
||||
/**
|
||||
* @brief 重置环形缓冲区状态。
|
||||
* @details 将读指针、写指针与丢弃计数清零,不清空数据区内容。
|
||||
* @note 内部工具函数;对外请优先使用 uart_ring_buffer_init()/uart_ring_buffer_clear()。
|
||||
* @ingroup RingBuffer
|
||||
*/
|
||||
static void uart_ring_buffer_reset_state(void) {
|
||||
write_index = 0;
|
||||
read_index = 0;
|
||||
dropped_bytes = 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 初始化环形缓冲区。
|
||||
* @details 调用内部重置逻辑,复位读写索引与丢弃计数,准备接收数据。
|
||||
* @note 若在中断环境使用,初始化前建议关闭相关接收中断以避免并发竞争。
|
||||
* @ingroup RingBuffer
|
||||
*/
|
||||
void uart_ring_buffer_init(void) {
|
||||
uart_ring_buffer_reset_state();
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 获取当前可读的字节数。
|
||||
* @details 通过读/写指针的快照计算可读长度,范围为 [0, UART_RX_BUFFER_SIZE-1]。
|
||||
* @return uint8_t 可读字节数。
|
||||
* @note 预留一个空槽区分“空/满”,因此满时返回 UART_RX_BUFFER_SIZE-1。
|
||||
* @ingroup RingBuffer
|
||||
*/
|
||||
uint8_t uart_ring_buffer_available(void) {
|
||||
/* 使用快照减少并发不一致窗口 */
|
||||
uint8_t w = write_index;
|
||||
uint8_t r = read_index;
|
||||
return (uint8_t)((w + UART_RX_BUFFER_SIZE - r) % UART_RX_BUFFER_SIZE);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 从环形缓冲区读取一个字节。
|
||||
* @details 若缓冲区非空,返回队头字节并推进读指针;若为空,返回 -1。
|
||||
* @return int 读取到的字节(0..255),或 -1 表示缓冲区为空。
|
||||
* @ingroup RingBuffer
|
||||
*/
|
||||
int uart_ring_buffer_get(void) {
|
||||
if (read_index == write_index) return -1; // 空
|
||||
uint8_t data = uart_rx_buffer[read_index];
|
||||
read_index = (read_index + 1) % UART_RX_BUFFER_SIZE;
|
||||
return data;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 向环形缓冲区写入一个字节。
|
||||
* @details 尝试写入一个新字节;若缓冲区已满则丢弃并计数。
|
||||
* @param data 待写入的字节。
|
||||
* @return bool 是否写入成功。
|
||||
* @retval true 写入成功。
|
||||
* @retval false 写入失败(缓冲区已满,数据被丢弃并计数)。
|
||||
* @note 如需“覆盖写入”策略,可在满时先推进读指针再写入。
|
||||
* @ingroup RingBuffer
|
||||
*/
|
||||
bool uart_ring_buffer_put(uint8_t data) {
|
||||
uint8_t next = (write_index + 1) % UART_RX_BUFFER_SIZE;
|
||||
if (next != read_index) { // 缓冲区未满
|
||||
uart_rx_buffer[write_index] = data;
|
||||
write_index = next;
|
||||
return true;
|
||||
} else {
|
||||
/* 缓冲区已满,丢弃新字节并计数 */
|
||||
dropped_bytes++;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 清空环形缓冲区。
|
||||
* @details 复位读写索引与丢弃计数,相当于逻辑上丢弃所有已接收数据,不擦除数据区内容。
|
||||
* @ingroup RingBuffer
|
||||
*/
|
||||
void uart_ring_buffer_clear(void) {
|
||||
uart_ring_buffer_reset_state();
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 获取因满而被丢弃的字节累计数量。
|
||||
* @details 写入时缓冲区满会丢弃新字节并累加计数;该计数在 init/clear 时清零。
|
||||
* @return uint32_t 丢弃的累计字节数。
|
||||
* @ingroup RingBuffer
|
||||
*/
|
||||
uint32_t uart_ring_buffer_drop_count(void) {
|
||||
return dropped_bytes;
|
||||
}
|
Reference in New Issue
Block a user