Compare commits

..

11 Commits

Author SHA1 Message Date
749cc2d3e8 delete unuse file 2025-08-17 03:15:51 +08:00
399b81005a change to Hardware IIC 2025-08-17 02:44:27 +08:00
633b2583b2 add task button more 2025-08-17 02:44:06 +08:00
b24c0853c9 rewrite write 16bits 2025-08-16 15:53:47 +08:00
77a6525168 rewrite read 16bits 2025-08-16 04:06:46 +08:00
6cc7b2dae2 add task button 2025-08-16 04:05:22 +08:00
8adabcd08d fixing IIC 2025-08-15 18:51:56 +08:00
dd7549d62b fix i2c scan printf to uart data transmit 2025-08-15 00:06:33 +08:00
90486c6609 fix i2c reset bus function 2025-08-14 23:59:15 +08:00
88f79f7eb0 fix iic driver 2025-08-14 19:57:57 +08:00
4e0ad6e8eb IIC OK but sensor error 2025-08-14 00:41:12 +08:00
11 changed files with 828 additions and 471 deletions

22
.vscode/tasks.json vendored
View File

@@ -11,7 +11,11 @@
"Build", "Build",
"Flash MCU" "Flash MCU"
], ],
"dependsOrder": "sequence" "dependsOrder": "sequence",
"icon": {
"id": "insert",
"tooltip": "Build and Flash"
}
}, },
{ {
"label": "Flash MCU", "label": "Flash MCU",
@@ -31,6 +35,10 @@
}, },
"presentation": { "presentation": {
"clear": true "clear": true
},
"icon": {
"id": "gather",
"tooltip": "Flash MCU"
} }
}, },
{ {
@@ -51,6 +59,10 @@
}, },
"presentation": { "presentation": {
"clear": true "clear": true
},
"icon": {
"id": "discard",
"tooltip": "Reset MCU"
} }
}, },
{ {
@@ -71,6 +83,10 @@
}, },
"presentation": { "presentation": {
"clear": true "clear": true
},
"icon": {
"id": "clear-all",
"tooltip": "Erase MCU"
} }
}, },
{ {
@@ -119,6 +135,10 @@
}, },
"presentation": { "presentation": {
"clear": true "clear": true
},
"icon": {
"id": "code",
"tooltip": "Build"
} }
} }
] ]

View File

@@ -1,139 +0,0 @@
# I2C驱动改进总结
## 🔧 主要改进内容
### 1. **状态机重构**
- **原问题**: 状态机逻辑混乱使用复杂的read_cycle变量
- **改进方案**:
- 使用清晰的`i2c_state_t`枚举定义状态
- 分离写入和读取的状态流程
- 每个状态职责单一,逻辑清晰
```c
typedef enum {
I2C_STATE_IDLE = 0, /* 空闲状态 */
I2C_STATE_START, /* 生成起始条件 */
I2C_STATE_SEND_ADDRESS, /* 发送从设备地址 */
I2C_STATE_CLEAR_ADDRESS, /* 清除地址标志 */
I2C_STATE_TRANSMIT_REG, /* 发送寄存器地址 */
I2C_STATE_TRANSMIT_DATA, /* 发送数据 */
I2C_STATE_RESTART, /* 生成重启条件 */
I2C_STATE_RECEIVE_DATA, /* 接收数据 */
I2C_STATE_STOP, /* 生成停止条件 */
I2C_STATE_ERROR /* 错误状态 */
} i2c_state_t;
```
### 2. **错误处理改进**
- **原问题**: 函数总是返回成功,无法区分错误类型
- **改进方案**:
- 定义详细的状态码枚举
- 添加参数验证
- 实现重试机制
```c
typedef enum {
I2C_STATUS_SUCCESS = 0, /* 操作成功 */
I2C_STATUS_TIMEOUT, /* 超时 */
I2C_STATUS_NACK, /* 无应答 */
I2C_STATUS_BUS_BUSY, /* 总线忙 */
I2C_STATUS_ERROR, /* 一般错误 */
I2C_STATUS_INVALID_PARAM /* 无效参数 */
} i2c_status_t;
```
### 3. **超时处理优化**
- **原问题**: 超时后无限循环重试
- **改进方案**:
- 限制最大重试次数 (`I2C_MAX_RETRY = 3`)
- 超时后进入错误状态
- 重试前添加延时
### 4. **总线重置完善**
- **原问题**: 总线重置不完整,可能无法恢复卡死状态
- **改进方案**:
- 实现标准的9时钟脉冲恢复
- 生成正确的停止条件
- 重新配置GPIO和I2C外设
```c
/* 生成9个时钟脉冲释放卡死的从设备 */
for (i = 0; i < I2C_RECOVERY_CLOCKS; i++) {
gpio_bit_reset(I2C_SCL_PORT, I2C_SCL_PIN);
delay_us(I2C_DELAY_US);
gpio_bit_set(I2C_SCL_PORT, I2C_SCL_PIN);
delay_us(I2C_DELAY_US);
}
```
### 5. **配置问题修复**
- **原问题**: 硬编码从设备地址0xA0
- **改进方案**: 主机地址设为0x00从设备地址作为参数传入
### 6. **代码结构优化**
- **原问题**: 状态机中有大量重复代码
- **改进方案**:
- 统一的超时检查模式
- 清晰的状态转换逻辑
- 一致的错误处理流程
## 📋 新增功能
### 1. **状态字符串函数**
```c
const char* i2c_get_status_string(i2c_status_t status);
```
用于调试时获取状态描述字符串。
### 2. **参数验证**
```c
if (data == NULL || slave_addr > 0x7F) {
return I2C_STATUS_INVALID_PARAM;
}
```
### 3. **调试信息**
使用`DEBUG_VERBOSE`宏控制调试输出。
## 🔍 状态机流程
### 写入流程:
```
START → SEND_ADDRESS → CLEAR_ADDRESS → TRANSMIT_REG →
TRANSMIT_DATA → STOP → SUCCESS
```
### 读取流程:
```
写阶段: START → SEND_ADDRESS → CLEAR_ADDRESS → TRANSMIT_REG → RESTART
读阶段: START → SEND_ADDRESS → CLEAR_ADDRESS → RECEIVE_DATA → STOP → SUCCESS
```
## 🚀 使用示例
```c
// 写入16位数据
uint8_t write_data[2] = {0x12, 0x34};
i2c_status_t status = i2c_write_16bits(0x48, 0x01, write_data);
if (status != I2C_STATUS_SUCCESS) {
printf("Write failed: %s\r\n", i2c_get_status_string(status));
}
// 读取16位数据
uint8_t read_data[2];
status = i2c_read_16bits(0x48, 0x01, read_data);
if (status == I2C_STATUS_SUCCESS) {
printf("Read data: 0x%02X%02X\r\n", read_data[0], read_data[1]);
} else {
printf("Read failed: %s\r\n", i2c_get_status_string(status));
}
```
## 📝 注意事项
1. **编译选项**: 确保包含`<stdbool.h>`以支持bool类型
2. **调试输出**: 定义`DEBUG_VERBOSE`宏启用调试信息
3. **延时函数**: 确保`delay_us()`函数可用
4. **兼容性**: 保留了原有的函数接口以保持向后兼容
这些改进大大提高了I2C驱动的可靠性、可维护性和调试能力。

View File

@@ -13,8 +13,8 @@
/* >>>>>>>>>>>>>>>>>>>>[DEBUG ASSERTIONS DEFINE]<<<<<<<<<<<<<<<<<<<< */ /* >>>>>>>>>>>>>>>>>>>>[DEBUG ASSERTIONS DEFINE]<<<<<<<<<<<<<<<<<<<< */
#define DEBUG_VERBOSE // Debug Assertions Status : Debug Verbose Information // #define DEBUG_VERBOSE // Debug Assertions Status : Debug Verbose Information
// #undef DEBUG_VERBOSE // Debug Assertions Status : No Debug Verbose Information #undef DEBUG_VERBOSE // Debug Assertions Status : No Debug Verbose Information
/******************************************************************************/ /******************************************************************************/

View File

@@ -16,6 +16,9 @@
* @{ * @{
*/ */
/** @brief 传感器周期上报使能标志 */
extern volatile bool g_sensor_report_enabled;
/** /**
* @section Command_Protocol 协议格式 * @section Command_Protocol 协议格式
* 接收命令帧格式: * 接收命令帧格式:

View File

@@ -32,15 +32,18 @@
/******************************************************************************/ /******************************************************************************/
/* I2C status enumeration */ /* I2C result enumeration */
typedef enum { typedef enum {
I2C_STATUS_SUCCESS = 0, /* Operation successful */ I2C_RESULT_SUCCESS = 0, /* Operation successful */
I2C_STATUS_TIMEOUT, /* Timeout occurred */ I2C_RESULT_TIMEOUT, /* Timeout occurred */
I2C_STATUS_NACK, /* No acknowledge received */ I2C_RESULT_NACK, /* No acknowledge received */
I2C_STATUS_BUS_BUSY, /* Bus is busy */ I2C_RESULT_BUS_BUSY, /* Bus is busy */
I2C_STATUS_ERROR, /* General error */ I2C_RESULT_ERROR, /* General error */
I2C_STATUS_INVALID_PARAM /* Invalid parameter */ I2C_RESULT_INVALID_PARAM, /* Invalid parameter */
} i2c_status_t; I2C_RECOVERY_OK,
I2C_RECOVERY_SDA_STUCK_LOW,
I2C_RECOVERY_SCL_STUCK_LOW
} i2c_result_t;
/* I2C state machine enumeration */ /* I2C state machine enumeration */
typedef enum { typedef enum {
@@ -53,45 +56,29 @@ typedef enum {
I2C_STATE_RESTART, /* Generate restart condition */ I2C_STATE_RESTART, /* Generate restart condition */
I2C_STATE_RECEIVE_DATA, /* Receive data */ I2C_STATE_RECEIVE_DATA, /* Receive data */
I2C_STATE_STOP, /* Generate stop condition */ I2C_STATE_STOP, /* Generate stop condition */
I2C_STATE_ERROR /* Error state */ I2C_STATE_ERROR, /* Error state */
I2C_STATE_END
} i2c_state_t; } i2c_state_t;
/* Legacy enumeration for compatibility */
typedef enum {
I2C_START = 0,
I2C_SEND_ADDRESS,
I2C_CLEAR_ADDRESS_FLAG,
I2C_TRANSMIT_DATA,
I2C_STOP
} i2c_process_enum;
/******************************************************************************/ /******************************************************************************/
/* Function declarations */ /* Function declarations */
/*!
\brief configure the GPIO ports for I2C
\param[in] none
\param[out] none
\retval none
*/
void i2c_gpio_config(void);
/*! /*!
\brief configure the I2C interface \brief configure the I2C interface
\param[in] none \param[in] none
\param[out] none \param[out] none
\retval i2c_status_t \retval i2c_result_t
*/ */
i2c_status_t i2c_config(void); i2c_result_t i2c_config(void);
/*! /*!
\brief reset I2C bus with proper recovery \brief reset I2C bus with proper recovery
\param[in] none \param[in] none
\param[out] none \param[out] none
\retval i2c_status_t \retval i2c_result_t
*/ */
i2c_status_t i2c_bus_reset(void); i2c_result_t i2c_bus_reset(void);
/*! /*!
\brief scan I2C bus for devices \brief scan I2C bus for devices
@@ -107,25 +94,34 @@ void i2c_scan(void);
\param[in] reg_addr: register address \param[in] reg_addr: register address
\param[in] data: pointer to 2-byte data array \param[in] data: pointer to 2-byte data array
\param[out] none \param[out] none
\retval i2c_status_t \retval i2c_result_t
*/ */
i2c_status_t i2c_write_16bits(uint8_t slave_addr, uint8_t reg_addr, const uint8_t data[2]); i2c_result_t i2c_write_16bits(uint8_t slave_addr, uint8_t reg_addr, uint8_t data[2]);
/*! /*!
\brief read 16-bit data from I2C device \brief read 16-bit data from I2C device
\param[in] slave_addr: 7-bit slave address \param[in] slave_addr: 7-bit slave address
\param[in] reg_addr: register address \param[in] reg_addr: register address
\param[out] data: pointer to 2-byte data buffer \param[out] data: pointer to 2-byte data buffer
\retval i2c_status_t \retval i2c_result_t
*/ */
i2c_status_t i2c_read_16bits(uint8_t slave_addr, uint8_t reg_addr, uint8_t *data); i2c_result_t i2c_read_16bits(uint8_t slave_addr, uint8_t reg_addr, uint8_t *data);
/*!
\brief read 16-bit data from I2C device
\param[in] slave_addr: 7-bit slave address
\param[in] reg_addr: register address
\param[out] data: pointer to 2-byte data buffer
\retval i2c_result_t
*/
i2c_result_t i2c_read_16bits(uint8_t slave_addr, uint8_t reg_addr, uint8_t *data);
/*! /*!
\brief get status string for debugging \brief get status string for debugging
\param[in] status: i2c_status_t value \param[in] status: i2c_result_t value
\param[out] none \param[out] none
\retval const char* status string \retval const char* status string
*/ */
const char* i2c_get_status_string(i2c_status_t status); const char* i2c_get_status_string(i2c_result_t status);
#endif //I2C_H #endif //I2C_H

28
Inc/sensor_example.h Normal file
View File

@@ -0,0 +1,28 @@
//
// Sensor Usage Example Header
// 传感器使用示例头文件
//
#ifndef SENSOR_EXAMPLE_H
#define SENSOR_EXAMPLE_H
#include "gd32e23x.h"
#include "board_config.h"
/*!
\brief 传感器初始化示例
\param[in] none
\param[out] none
\retval none
*/
void sensors_init_example(void);
/*!
\brief 传感器读取示例
\param[in] none
\param[out] none
\retval none
*/
void sensors_read_example(void);
#endif // SENSOR_EXAMPLE_H

View File

@@ -77,7 +77,7 @@
* ============================================================================ */ * ============================================================================ */
/** @brief 传感器周期上报使能标志 */ /** @brief 传感器周期上报使能标志 */
static volatile bool s_sensor_report_enabled = false; volatile bool g_sensor_report_enabled = false;
/** @name 预设响应数据 /** @name 预设响应数据
* @{ */ * @{ */
@@ -96,7 +96,7 @@ static const uint8_t s_report_status_err[] = { 'e','r','r' }; /**< 错误响应
*/ */
bool get_sensor_report_enabled(void) bool get_sensor_report_enabled(void)
{ {
return s_sensor_report_enabled; return g_sensor_report_enabled;
} }
/** /**
@@ -108,7 +108,7 @@ bool get_sensor_report_enabled(void)
*/ */
void set_sensor_report_status(bool status) void set_sensor_report_status(bool status)
{ {
s_sensor_report_enabled = status; g_sensor_report_enabled = status;
} }
/** /**
@@ -234,8 +234,8 @@ static uint8_t parse_uint_dec(const uint8_t *s, uint8_t n, uint32_t *out)
* - 带参数命令M<数字>S<参数>(如 M100S123参数为十进制 * - 带参数命令M<数字>S<参数>(如 M100S123参数为十进制
* *
* 支持的命令: * 支持的命令:
* - M1: 开启LED启用传感器上报 * - M1: 启用传感器上报
* - M2: 关闭LED禁用传感器上报 * - M2: 禁用传感器上报
* - M100S<value>: 设置PWM值示例 * - M100S<value>: 设置PWM值示例
* *
* @param frame 指向完整命令帧的缓冲区从包头0xD5开始 * @param frame 指向完整命令帧的缓冲区从包头0xD5开始
@@ -275,29 +275,425 @@ void handle_command(const uint8_t *frame, uint8_t len) {
if (cmd_index == cmd_len) { if (cmd_index == cmd_len) {
// 仅基础命令,如 M1, M2, M3 // 仅基础命令,如 M1, M2, M3
switch (base_cmd) { switch (base_cmd) {
case 1u: // M1命令 case 1u: // M1: enable sensor report
set_sensor_report_status(true); set_sensor_report_status(true);
// send_response(RESP_TYPE_OK, s_report_status_ok, sizeof(s_report_status_ok)); send_response(RESP_TYPE_OK, s_report_status_ok, sizeof(s_report_status_ok));
uint8_t test_response1[] = { 0xAA, 0xBB, 0xCC, 0xDD };
send_response(RESP_TYPE_OK, test_response1, sizeof(test_response1));
return; return;
case 2u: // M2命令 case 2u: // M2: disable sensor report
set_sensor_report_status(false); set_sensor_report_status(false);
// send_response(RESP_TYPE_OK, s_report_status_ok, sizeof(s_report_status_ok)); send_response(RESP_TYPE_OK, s_report_status_ok, sizeof(s_report_status_ok));
uint8_t test_response2[] = { 0xDD, 0xCC, 0xBB, 0xAA };
send_response(RESP_TYPE_OK, test_response2, sizeof(test_response2));
return; return;
// 示例M3、M10、M201、M100 等(按需添加) // 示例M3、M10、M201、M100 等(按需添加)
case 3u: // M3命令 // case 3u: // M3命令 - 高电流驱动测试
send_response(RESP_TYPE_OK, s_report_status_ok, sizeof(s_report_status_ok)); // /**
return; // * M3命令使用更高驱动电流测试线圈响应
case 4u: // M4命令 // * 响应格式6字节状态信息
send_response(RESP_TYPE_OK, s_report_status_err, sizeof(s_report_status_err)); // *
return; // * 响应数据解析:
// case 10u: // M10命令 // * [0-1]: 传感器状态寄存器(大端序)
// send_response(RESP_TYPE_OK, s_report_status_ok, sizeof(s_report_status_ok)); // * bit[15-8]: 预留
// * bit[7]: DRDY_1 - 通道1数据就绪
// * bit[6]: DRDY_0 - 通道0数据就绪
// * bit[5]: UNREAD_CONV - 未读转换结果
// * bit[4]: ERR_ZC - 零计数错误
// * bit[3]: ERR_AE - 幅度错误(重点关注)
// * bit[2]: ERR_WD - 看门狗超时
// * bit[1]: ERR_OR - 过量程错误
// * bit[0]: ERR_UR - 欠量程错误
// * [2]: 数据就绪标志 (0x01=就绪, 0x00=未就绪)
// * [3]: 0xA0 - 高电流测试标记
// * [4]: 幅度错误专用标志 (0xAE=有幅度错误, 0x00=无)
// * [5]: 0x33 - M3命令标记
// *
// * 分析要点:
// * - 如果[0-1]从0x0008变为其他值说明高电流有效果
// * - 如果[2]变为0x01说明数据开始就绪
// * - 如果[4]变为0x00说明幅度错误消失
// */
// // 重置传感器
// ldc1612_reset_sensor();
// delay_ms(50);
// // 使用更高的驱动电流重新配置
// // ldc1612_write_register(SET_DRIVER_CURRENT_REG, 0xA000);
// delay_ms(10);
// // 重新配置其他参数
// ldc1612_config_single_channel(CHANNEL_0);
// delay_ms(200); // 更长稳定时间
// // 检查结果
// uint16_t status_m3 = ldc1612_get_sensor_status();
// bool ready_m3 = ldc1612_is_data_ready(CHANNEL_0);
// uint8_t m3_info[6];
// m3_info[0] = (uint8_t)(status_m3 >> 8);
// m3_info[1] = (uint8_t)(status_m3 & 0xFF);
// m3_info[2] = ready_m3 ? 0x01 : 0x00;
// m3_info[3] = 0xA0; // 高电流标记
// m3_info[4] = (status_m3 & 0x0008) ? 0xAE : 0x00; // 幅度错误标志
// m3_info[5] = 0x33; // M3命令标记
// send_response(RESP_TYPE_OK, m3_info, sizeof(m3_info));
// return; // return;
// case 4u: // M4命令 - 寄存器诊断
// /**
// * M4命令读取关键寄存器进行配置诊断
// * 响应格式8字节寄存器信息
// *
// * 响应数据解析:
// * [0-1]: 状态寄存器 (0x18) - 当前传感器状态
// * [2-3]: 传感器配置寄存器 (0x1A) - 传感器工作模式
// * 期望值: 0x1601 (活动模式,单通道)
// * [4-5]: 驱动电流寄存器 (0x1E) - 当前驱动电流设置
// * 常见值: 0x9000(默认), 0xA000(高), 0xF800(最高)
// * [6]: I2C读取状态 (0x4F='O'=成功, 0xEE=失败)
// * [7]: 0x44 - M4命令标记
// *
// * 分析要点:
// * - [2-3]应该是0x1601如果不是说明配置异常
// * - [4-5]显示实际的驱动电流设置
// * - [6]必须是0x4F否则I2C通信有问题
// */
// // 简化版本只读取最关键的寄存器避免I2C超时
// uint16_t status_reg = ldc1612_get_sensor_status(); // 0x18
// // 逐一安全读取关键寄存器
// uint8_t data_buf[2] = {0};
// uint16_t sensor_config = 0;
// uint16_t drive_current = 0;
// // 尝试读取传感器配置寄存器
// bool result1_ok = (LDC1612_IIC_READ_16BITS(LDC1612_ADDR, SENSOR_CONFIG_REG, data_buf) == I2C_RESULT_SUCCESS);
// if (result1_ok) {
// sensor_config = (data_buf[0] << 8) | data_buf[1];
// }
// // 尝试读取驱动电流寄存器
// bool result2_ok = (LDC1612_IIC_READ_16BITS(LDC1612_ADDR, SET_DRIVER_CURRENT_REG, data_buf) == I2C_RESULT_SUCCESS);
// if (result2_ok) {
// drive_current = (data_buf[0] << 8) | data_buf[1];
// }
// // 构造8字节简化诊断信息
// uint8_t diag_info[8];
// diag_info[0] = (uint8_t)(status_reg >> 8); // 状态寄存器高位
// diag_info[1] = (uint8_t)(status_reg & 0xFF); // 状态寄存器低位
// diag_info[2] = (uint8_t)(sensor_config >> 8); // 传感器配置寄存器高位
// diag_info[3] = (uint8_t)(sensor_config & 0xFF); // 传感器配置寄存器低位
// diag_info[4] = (uint8_t)(drive_current >> 8); // 驱动电流寄存器高位
// diag_info[5] = (uint8_t)(drive_current & 0xFF); // 驱动电流寄存器低位
// diag_info[6] = (result1_ok && result2_ok) ? 0x4F : 0xEE; // I2C状态
// diag_info[7] = 0x44; // M4命令标记
// send_response(RESP_TYPE_OK, diag_info, sizeof(diag_info));
// return;
// case 5u: // M5命令 - 最高电流启动测试
// // 命令: D5 03 02 4D 35 87
// // 响应: B5 F0 08 [状态2字节][就绪标志][电流设置2字节][幅度错误标志][M5标记][最高电流标记] CRC
// // 响应格式:
// // [0-1]: 传感器状态寄存器(启动后状态)
// // [2]: 数据就绪标志 (0x01=就绪, 0x00=未就绪)
// // [3-4]: 实际驱动电流设置值应该是0xF800
// // [5]: 幅度错误专用标志 (0xAE=仍有错误, 0x00=错误消失)
// // [6]: 0x55 - M5命令标记
// // [7]: 0xF8 - 最高电流标记
// // 重置传感器
// ldc1612_reset_sensor();
// delay_ms(100);
// // 使用最高驱动电流并固定配置
// // ldc1612_write_register(SET_DRIVER_CURRENT_REG, 0xF800);
// delay_ms(10);
// // 手动配置其他必要寄存器,避免被覆盖
// // 配置频率分频器为较低频率 (更容易起振)
// uint8_t freq_data[2] = {0x10, 0x00}; // 较低分频
// LDC1612_IIC_WRITE_16BITS(LDC1612_ADDR, SET_FREQ_REG_START + CHANNEL_0, freq_data);
// delay_ms(10);
// // 设置较长的LC稳定时间
// uint8_t lc_data[2] = {0x04, 0x00}; // 更长稳定时间
// LDC1612_IIC_WRITE_16BITS(LDC1612_ADDR, SET_LC_STABILIZE_REG_START + CHANNEL_0, lc_data);
// delay_ms(10);
// // 配置MUX为单通道模式
// // ldc1612_configure_mux_register(0, CHANNEL_0, LDC1612_MUX_RR_SEQUENCE_1, LDC1612_MUX_FILTER_1MHz);
// delay_ms(10);
// // 启动传感器
// uint8_t sensor_cfg_data[2] = {0x16, 0x01}; // 活动模式,单通道
// LDC1612_IIC_WRITE_16BITS(LDC1612_ADDR, SENSOR_CONFIG_REG, sensor_cfg_data);
// delay_ms(200); // 更长稳定时间
// // 读取结果
// uint16_t status_m5 = ldc1612_get_sensor_status();
// bool ready_m5 = ldc1612_is_data_ready(CHANNEL_0);
// // 再次确认驱动电流设置
// uint8_t curr_data[2];
// LDC1612_IIC_READ_16BITS(LDC1612_ADDR, SET_DRIVER_CURRENT_REG, curr_data);
// uint16_t actual_current = (curr_data[0] << 8) | curr_data[1];
// uint8_t m5_info[8];
// m5_info[0] = (uint8_t)(status_m5 >> 8);
// m5_info[1] = (uint8_t)(status_m5 & 0xFF);
// m5_info[2] = ready_m5 ? 0x01 : 0x00;
// m5_info[3] = (uint8_t)(actual_current >> 8); // 实际电流设置高位
// m5_info[4] = (uint8_t)(actual_current & 0xFF); // 实际电流设置低位
// m5_info[5] = (status_m5 & 0x0008) ? 0xAE : 0x00; // 幅度错误标志
// m5_info[6] = 0x55; // M5命令标记
// m5_info[7] = 0xF8; // 最高电流标记
// send_response(RESP_TYPE_OK, m5_info, sizeof(m5_info));
// return;
// case 6u: // M6命令 - 芯片功能验证
// // 命令: D5 03 02 4D 36 88
// // 响应: B5 F0 0C [写入值2字节][读取值2字节][制造商ID2字节][设备ID2字节][状态2字节][ID读取状态][M6标记] CRC
// // 响应格式:
// // [0-1]: 写入测试值 (0x9000)
// // [2-3]: 读取回的值
// // [4-5]: 制造商ID (应该是0x5449="TI")
// // [6-7]: 设备ID (应该是0x3055)
// // [8-9]: 当前状态寄存器
// // [10]: ID读取状态 (0x4F=成功, 0xEE=失败)
// // [11]: 0x66 - M6命令标记
// // 测试1: 写入和读取特定值到驱动电流寄存器
// uint8_t test_current_data[2] = {0x90, 0x00}; // 写入0x9000
// LDC1612_IIC_WRITE_16BITS(LDC1612_ADDR, SET_DRIVER_CURRENT_REG, test_current_data);
// delay_ms(10);
// // 读取验证
// uint8_t read_current_data[2];
// LDC1612_IIC_READ_16BITS(LDC1612_ADDR, SET_DRIVER_CURRENT_REG, read_current_data);
// uint16_t read_current = (read_current_data[0] << 8) | read_current_data[1];
// // 测试2: 读取制造商ID和设备ID
// uint8_t manufacturer_data[2];
// uint8_t device_data[2];
// bool id_read_ok = true;
// if (LDC1612_IIC_READ_16BITS(LDC1612_ADDR, 0x7E, manufacturer_data) != I2C_RESULT_SUCCESS) {
// id_read_ok = false;
// }
// if (LDC1612_IIC_READ_16BITS(LDC1612_ADDR, 0x7F, device_data) != I2C_RESULT_SUCCESS) {
// id_read_ok = false;
// }
// uint16_t manufacturer_id = id_read_ok ? ((manufacturer_data[0] << 8) | manufacturer_data[1]) : 0x0000;
// uint16_t device_id = id_read_ok ? ((device_data[0] << 8) | device_data[1]) : 0x0000;
// // 测试3: 检查当前状态
// uint16_t current_status = ldc1612_get_sensor_status();
// // 构造12字节测试结果
// uint8_t test_info[12];
// test_info[0] = 0x90; // 写入的值高位
// test_info[1] = 0x00; // 写入的值低位
// test_info[2] = (uint8_t)(read_current >> 8); // 读取的值高位
// test_info[3] = (uint8_t)(read_current & 0xFF); // 读取的值低位
// test_info[4] = (uint8_t)(manufacturer_id >> 8);
// test_info[5] = (uint8_t)(manufacturer_id & 0xFF);
// test_info[6] = (uint8_t)(device_id >> 8);
// test_info[7] = (uint8_t)(device_id & 0xFF);
// test_info[8] = (uint8_t)(current_status >> 8);
// test_info[9] = (uint8_t)(current_status & 0xFF);
// test_info[10] = id_read_ok ? 0x4F : 0xEE; // ID读取状态
// test_info[11] = 0x66; // M6命令标记
// send_response(RESP_TYPE_OK, test_info, sizeof(test_info));
// return;
// case 7u: // M7命令 - 保守参数测试
// // 命令: D5 03 02 4D 37 89
// // 响应: B5 F0 0A [状态2字节][就绪标志][频率设置2字节][幅度错误标志][欠量程错误标志][过量程错误标志][M7标记][低频标记] CRC
// // 响应格式:
// // [0-1]: 状态寄存器
// // [2]: 数据就绪标志
// // [3-4]: 实际频率分频器设置 (0x2000=较低频率)
// // [5]: 幅度错误标志 (0xAE=有错误, 0x00=无)
// // [6]: 欠量程错误标志 (0x01=有, 0x00=无)
// // [7]: 过量程错误标志 (0x02=有, 0x00=无)
// // [8]: 0x77 - M7命令标记
// // [9]: 0x20 - 低频标记
// // 重置传感器
// ldc1612_reset_sensor();
// delay_ms(100);
// // 使用保守的配置尝试启动线圈
// // 1. 设置最高驱动电流
// uint8_t drive_data[2] = {0xF8, 0x00}; // 最高电流
// LDC1612_IIC_WRITE_16BITS(LDC1612_ADDR, SET_DRIVER_CURRENT_REG, drive_data);
// delay_ms(10);
// // 2. 设置较低的频率分频器(适合更大电感值)
// uint8_t freq_low_data[2] = {0x20, 0x00}; // 更低频率
// LDC1612_IIC_WRITE_16BITS(LDC1612_ADDR, SET_FREQ_REG_START + CHANNEL_0, freq_low_data);
// delay_ms(10);
// // 3. 设置更长的LC稳定时间
// uint8_t lc_stable_data[2] = {0x08, 0x00}; // 更长稳定时间
// LDC1612_IIC_WRITE_16BITS(LDC1612_ADDR, SET_LC_STABILIZE_REG_START + CHANNEL_0, lc_stable_data);
// delay_ms(10);
// // 4. 设置更长的转换时间
// uint8_t conv_time_data[2] = {0x04, 0x00}; // 更长转换时间
// LDC1612_IIC_WRITE_16BITS(LDC1612_ADDR, SET_CONVERSION_TIME_REG_START + CHANNEL_0, conv_time_data);
// delay_ms(10);
// // 5. 设置转换偏移
// uint8_t conv_offset_data[2] = {0x00, 0x00};
// LDC1612_IIC_WRITE_16BITS(LDC1612_ADDR, SET_CONVERSION_OFFSET_REG_START + CHANNEL_0, conv_offset_data);
// delay_ms(10);
// // 6. 配置错误寄存器 - 降低错误敏感度
// uint8_t error_config_data[2] = {0x00, 0x00}; // 允许所有错误
// LDC1612_IIC_WRITE_16BITS(LDC1612_ADDR, ERROR_CONFIG_REG, error_config_data);
// delay_ms(10);
// // 7. 配置MUX寄存器
// // ldc1612_configure_mux_register(0, CHANNEL_0, LDC1612_MUX_RR_SEQUENCE_1, LDC1612_MUX_FILTER_1MHz);
// delay_ms(10);
// // 8. 启动传感器
// uint8_t sensor_start_data[2] = {0x16, 0x01}; // 活动模式
// LDC1612_IIC_WRITE_16BITS(LDC1612_ADDR, SENSOR_CONFIG_REG, sensor_start_data);
// delay_ms(500); // 给予充分时间稳定
// // 检查结果
// uint16_t status_m7 = ldc1612_get_sensor_status();
// bool ready_m7 = ldc1612_is_data_ready(CHANNEL_0);
// // 读取实际配置的频率分频器确认
// uint8_t freq_readback[2];
// LDC1612_IIC_READ_16BITS(LDC1612_ADDR, SET_FREQ_REG_START + CHANNEL_0, freq_readback);
// uint16_t freq_actual = (freq_readback[0] << 8) | freq_readback[1];
// uint8_t m7_info[10];
// m7_info[0] = (uint8_t)(status_m7 >> 8);
// m7_info[1] = (uint8_t)(status_m7 & 0xFF);
// m7_info[2] = ready_m7 ? 0x01 : 0x00;
// m7_info[3] = (uint8_t)(freq_actual >> 8); // 实际频率分频器
// m7_info[4] = (uint8_t)(freq_actual & 0xFF);
// m7_info[5] = (status_m7 & 0x0008) ? 0xAE : 0x00; // 幅度错误
// m7_info[6] = (status_m7 & 0x0001) ? 0x01 : 0x00; // 欠量程错误
// m7_info[7] = (status_m7 & 0x0002) ? 0x02 : 0x00; // 过量程错误
// m7_info[8] = 0x77; // M7命令标记
// m7_info[9] = 0x20; // 低频标记
// send_response(RESP_TYPE_OK, m7_info, sizeof(m7_info));
// return;
// case 8u: // M8命令 - 极端参数测试
// // 命令: D5 03 02 4D 38 8A
// // 响应: B5 F0 06 [状态2字节][就绪标志][幅度错误标志][M8标记][极端测试标记] CRC
// // 响应格式:
// // [0-1]: 传感器状态寄存器
// // [2]: 数据就绪标志 (0x01=就绪, 0x00=未就绪)
// // [3]: 幅度错误标志 (0xAE=仍有错误, 0x00=错误消失)
// // [4]: 0x88 - M8命令标记
// // [5]: 0xEE - 极端测试标记
// {
// // 重置传感器
// ldc1612_reset_sensor();
// delay_ms(100);
// // 极端配置1: 极低频率
// uint8_t extreme_freq[2] = {0x40, 0x00};
// LDC1612_IIC_WRITE_16BITS(LDC1612_ADDR, SET_FREQ_REG_START + CHANNEL_0, extreme_freq);
// delay_ms(10);
// // 极端配置2: 最大驱动电流
// uint8_t max_drive[2] = {0xFF, 0x00};
// LDC1612_IIC_WRITE_16BITS(LDC1612_ADDR, SET_DRIVER_CURRENT_REG, max_drive);
// delay_ms(10);
// // 极端配置3: 禁用错误检测
// uint8_t no_errors[2] = {0x00, 0x00};
// LDC1612_IIC_WRITE_16BITS(LDC1612_ADDR, ERROR_CONFIG_REG, no_errors);
// delay_ms(10);
// // 启动传感器
// uint8_t start_data[2] = {0x16, 0x01};
// LDC1612_IIC_WRITE_16BITS(LDC1612_ADDR, SENSOR_CONFIG_REG, start_data);
// delay_ms(1000); // 等待1秒
// // 读取状态
// uint16_t status_8 = ldc1612_get_sensor_status();
// bool ready_8 = ldc1612_is_data_ready(CHANNEL_0);
// uint8_t m8_result[6];
// m8_result[0] = (uint8_t)(status_8 >> 8);
// m8_result[1] = (uint8_t)(status_8 & 0xFF);
// m8_result[2] = ready_8 ? 0x01 : 0x00;
// m8_result[3] = (status_8 & 0x0008) ? 0xAE : 0x00; // 幅度错误
// m8_result[4] = 0x88; // M8标记
// m8_result[5] = 0xEE; // 极端测试标记
// send_response(RESP_TYPE_OK, m8_result, sizeof(m8_result));
// return;
// }
// case 9u: // M9命令 - 多频率特性测试
// // 命令: D5 03 02 4D 39 8B
// // 响应: B5 F0 08 [高频状态2字节][高频就绪标志][低频状态2字节][低频就绪标志][M9标记][多频测试标记] CRC
// // 响应格式:
// // [0-1]: 高频测试状态
// // [2]: 高频就绪标志 (0x01=就绪, 0x00=未就绪)
// // [3-4]: 低频测试状态
// // [5]: 低频就绪标志 (0x01=就绪, 0x00=未就绪)
// // [6]: 0x99 - M9命令标记
// // [7]: 0xAA - 多频测试标记
// {
// // 测试1: 高频配置
// ldc1612_reset_sensor();
// delay_ms(50);
// uint8_t high_freq[2] = {0x04, 0x00}; // 高频
// uint8_t low_drive[2] = {0x80, 0x00}; // 低电流
// LDC1612_IIC_WRITE_16BITS(LDC1612_ADDR, SET_FREQ_REG_START + CHANNEL_0, high_freq);
// LDC1612_IIC_WRITE_16BITS(LDC1612_ADDR, SET_DRIVER_CURRENT_REG, low_drive);
// delay_ms(10);
// // 启动高频测试
// uint8_t start_hf[2] = {0x16, 0x01};
// LDC1612_IIC_WRITE_16BITS(LDC1612_ADDR, SENSOR_CONFIG_REG, start_hf);
// delay_ms(200);
// uint16_t hf_status = ldc1612_get_sensor_status();
// bool hf_ready = ldc1612_is_data_ready(CHANNEL_0);
// // 测试2: 低频配置
// uint8_t sleep_mode[2] = {0x20, 0x01};
// LDC1612_IIC_WRITE_16BITS(LDC1612_ADDR, SENSOR_CONFIG_REG, sleep_mode);
// delay_ms(50);
// uint8_t low_freq[2] = {0x20, 0x00}; // 低频
// uint8_t high_drive[2] = {0xC0, 0x00}; // 高电流
// LDC1612_IIC_WRITE_16BITS(LDC1612_ADDR, SET_FREQ_REG_START + CHANNEL_0, low_freq);
// LDC1612_IIC_WRITE_16BITS(LDC1612_ADDR, SET_DRIVER_CURRENT_REG, high_drive);
// delay_ms(10);
// // 启动低频测试
// LDC1612_IIC_WRITE_16BITS(LDC1612_ADDR, SENSOR_CONFIG_REG, start_hf);
// delay_ms(200);
// uint16_t lf_status = ldc1612_get_sensor_status();
// bool lf_ready = ldc1612_is_data_ready(CHANNEL_0);
// uint8_t m9_result[8];
// m9_result[0] = (uint8_t)(hf_status >> 8); // 高频状态
// m9_result[1] = (uint8_t)(hf_status & 0xFF);
// m9_result[2] = hf_ready ? 0x01 : 0x00; // 高频就绪
// m9_result[3] = (uint8_t)(lf_status >> 8); // 低频状态
// m9_result[4] = (uint8_t)(lf_status & 0xFF);
// m9_result[5] = lf_ready ? 0x01 : 0x00; // 低频就绪
// m9_result[6] = 0x99; // M9标记
// m9_result[7] = 0xAA; // 多频测试标记
// send_response(RESP_TYPE_OK, m9_result, sizeof(m9_result));
// return;
// }
// case 201u: // M201命令 // case 201u: // M201命令
// send_response(RESP_TYPE_OK, s_report_status_ok, sizeof(s_report_status_ok)); // send_response(RESP_TYPE_OK, s_report_status_ok, sizeof(s_report_status_ok));
// return; // return;

486
Src/i2c.c
View File

@@ -1,13 +1,9 @@
// //
// Created by dell on 24-12-20. // Created by dell on 24-12-20.
// Improved I2C driver with better state machine and error handling
// //
#include "i2c.h" #include "i2c.h"
/* Private variables */
static uint8_t i2c_retry_count = 0;
/*! /*!
\brief configure the GPIO ports \brief configure the GPIO ports
\param[in] none \param[in] none
@@ -33,81 +29,131 @@ void i2c_gpio_config(void) {
\brief configure the I2CX interface \brief configure the I2CX interface
\param[in] none \param[in] none
\param[out] none \param[out] none
\retval i2c_status_t \retval none
*/ */
i2c_status_t i2c_config(void) { i2c_result_t i2c_config(void) {
/* configure I2C GPIO */ /* configure I2C GPIO */
i2c_gpio_config(); i2c_gpio_config();
/* enable I2C clock */ /* enable I2C clock */
rcu_periph_clock_enable(RCU_I2C); rcu_periph_clock_enable(RCU_I2C);
/* configure I2C clock */ /* configure I2C clock */
i2c_clock_config(I2C0, I2C_SPEED, I2C_DTCY_2); i2c_clock_config(I2C0, I2C_SPEED, I2C_DTCY_2);
/* configure I2C address */
/* configure I2C address - use 0x00 as master doesn't need specific address */ i2c_mode_addr_config(I2C0, I2C_I2CMODE_ENABLE, I2C_ADDFORMAT_7BITS, 0xA0);
i2c_mode_addr_config(I2C0, I2C_I2CMODE_ENABLE, I2C_ADDFORMAT_7BITS, I2C_MASTER_ADDRESS);
/* enable I2CX */ /* enable I2CX */
i2c_enable(I2C0); i2c_enable(I2C0);
/* enable acknowledge */ /* enable acknowledge */
i2c_ack_config(I2C0, I2C_ACK_ENABLE); i2c_ack_config(I2C0, I2C_ACK_ENABLE);
/* reset retry counter */ return I2C_RESULT_SUCCESS;
i2c_retry_count = 0; }
return I2C_STATUS_SUCCESS; /* wait for SCL to go high, return true if successful, false if timeout */
static bool i2c_wait_scl_high(uint16_t max_wait_time) {
while (max_wait_time--) {
if (gpio_input_bit_get(I2C_SCL_PORT, I2C_SCL_PIN)) {
return true;
}
delay_10us(1);
}
return false;
}
/* generate one manual SCL pulse; return true if SCL observed high (no stuck/overstretch) */
static bool i2c_generate_scl_pulse(void) {
GPIO_BC(I2C_SCL_PORT) = I2C_SCL_PIN; /* drive SCL low */
delay_10us(1);
GPIO_BOP(I2C_SCL_PORT) = I2C_SCL_PIN; /* release SCL (open-drain -> high via pull-up) */
return i2c_wait_scl_high(200); /* wait up to ~2ms for clock stretching release */
} }
/*! /*!
\brief reset I2C bus with proper 9-clock recovery \brief reset I2C bus
\param[in] none \param[in] none
\param[out] none \param[out] none
\retval i2c_status_t \retval none
*/ */
i2c_status_t i2c_bus_reset(void) { i2c_result_t i2c_bus_reset(void) {
uint8_t i; /* 1. Disable & deinit peripheral so pins can be fully controlled */
/* disable I2C peripheral */
i2c_disable(I2C0); i2c_disable(I2C0);
i2c_deinit(I2C0); i2c_deinit(I2C0);
/* configure SDA/SCL as GPIO output for manual control */ #ifdef DEBUG_VERBOSE
printf("I2C bus reset\r\n");
#endif
/* 2. Configure SCL/SDA as GPIO open-drain outputs with pull-up and release them */
gpio_mode_set(I2C_SCL_PORT, GPIO_MODE_OUTPUT, GPIO_PUPD_PULLUP, I2C_SCL_PIN); gpio_mode_set(I2C_SCL_PORT, GPIO_MODE_OUTPUT, GPIO_PUPD_PULLUP, I2C_SCL_PIN);
gpio_mode_set(I2C_SDA_PORT, GPIO_MODE_OUTPUT, GPIO_PUPD_PULLUP, I2C_SDA_PIN); gpio_mode_set(I2C_SDA_PORT, GPIO_MODE_OUTPUT, GPIO_PUPD_PULLUP, I2C_SDA_PIN);
gpio_output_options_set(I2C_SCL_PORT, GPIO_OTYPE_OD, GPIO_OSPEED_50MHZ, I2C_SCL_PIN); gpio_output_options_set(I2C_SCL_PORT, GPIO_OTYPE_OD, GPIO_OSPEED_50MHZ, I2C_SCL_PIN);
gpio_output_options_set(I2C_SDA_PORT, GPIO_OTYPE_OD, GPIO_OSPEED_50MHZ, I2C_SDA_PIN); gpio_output_options_set(I2C_SDA_PORT, GPIO_OTYPE_OD, GPIO_OSPEED_50MHZ, I2C_SDA_PIN);
gpio_bit_set(I2C_SCL_PORT, I2C_SCL_PIN); /* release SCL */
gpio_bit_set(I2C_SDA_PORT, I2C_SDA_PIN); /* release SDA */
/* ensure both lines are high initially */ #ifdef DEBUG_VERBOSE
gpio_bit_set(I2C_SCL_PORT, I2C_SCL_PIN); printf("I2C bus reset: SCL = %d, SDA = %d\r\n", gpio_input_bit_get(I2C_SCL_PORT, I2C_SCL_PIN), gpio_input_bit_get(I2C_SDA_PORT, I2C_SDA_PIN));
gpio_bit_set(I2C_SDA_PORT, I2C_SDA_PIN); #endif
delay_10us(I2C_DELAY_10US);
/* generate 9 clock pulses to release any stuck slave */ /* 3. Double sample to confirm bus state */
for (i = 0; i < I2C_RECOVERY_CLOCKS; i++) { delay_10us(1);
gpio_bit_reset(I2C_SCL_PORT, I2C_SCL_PIN); bool scl_value1 = gpio_input_bit_get(I2C_SCL_PORT, I2C_SCL_PIN);
delay_10us(I2C_DELAY_10US); bool sda_value1 = gpio_input_bit_get(I2C_SDA_PORT, I2C_SDA_PIN);
gpio_bit_set(I2C_SCL_PORT, I2C_SCL_PIN); delay_10us(1);
delay_10us(I2C_DELAY_10US); bool scl_value2 = gpio_input_bit_get(I2C_SCL_PORT, I2C_SCL_PIN);
bool sda_value2 = gpio_input_bit_get(I2C_SDA_PORT, I2C_SDA_PIN);
/* 4. If SCL low -> stuck (cannot proceed) */
if (!scl_value2) {
#ifdef DEBUG_VERBOSE
printf("I2C bus reset: SCL stuck low\r\n");
#endif
return I2C_RECOVERY_SCL_STUCK_LOW;
} }
/* generate stop condition */ /* 5. Fast path: bus idle */
gpio_bit_reset(I2C_SDA_PORT, I2C_SDA_PIN); if (scl_value1 && sda_value1 && scl_value2 && sda_value2) {
delay_10us(I2C_DELAY_10US); i2c_config();
gpio_bit_set(I2C_SCL_PORT, I2C_SCL_PIN); #ifdef DEBUG_VERBOSE
delay_10us(I2C_DELAY_10US); printf("I2C bus reset: bus idle\r\n");
gpio_bit_set(I2C_SDA_PORT, I2C_SDA_PIN); #endif
delay_10us(I2C_DELAY_10US); return I2C_RECOVERY_OK;
}
/* reconfigure as I2C pins */ /* 6. SDA low: attempt to free by generating up to I2C_RECOVERY_CLOCKS pulses */
gpio_af_set(I2C_SCL_PORT, I2C_GPIO_AF, I2C_SCL_PIN); if (scl_value2 && !sda_value2) {
gpio_af_set(I2C_SDA_PORT, I2C_GPIO_AF, I2C_SDA_PIN); bool sda_released = false;
gpio_mode_set(I2C_SCL_PORT, GPIO_MODE_AF, GPIO_PUPD_PULLUP, I2C_SCL_PIN); #ifdef DEBUG_VERBOSE
gpio_mode_set(I2C_SDA_PORT, GPIO_MODE_AF, GPIO_PUPD_PULLUP, I2C_SDA_PIN); printf("I2C bus reset: SCL will try to free SDA\r\n");
#endif
for (uint8_t i = 0; i < I2C_RECOVERY_CLOCKS && !sda_released; i++) {
if (!i2c_generate_scl_pulse()) {
return I2C_RECOVERY_SCL_STUCK_LOW; /* SCL failed to go high */
}
if (gpio_input_bit_get(I2C_SDA_PORT, I2C_SDA_PIN)) {
sda_released = true;
}
}
if (!sda_released) {
return I2C_RECOVERY_SDA_STUCK_LOW;
}
/* 7. Generate a STOP condition to leave bus in idle state */
#ifdef DEBUG_VERBOSE
printf("I2C bus reset: generating STOP condition\r\n");
#endif
gpio_bit_reset(I2C_SDA_PORT, I2C_SDA_PIN); /* SDA low */
delay_10us(1);
gpio_bit_set(I2C_SCL_PORT, I2C_SCL_PIN); /* ensure SCL high */
delay_10us(1);
gpio_bit_set(I2C_SDA_PORT, I2C_SDA_PIN); /* SDA rising while SCL high -> STOP */
delay_10us(1);
}
/* reconfigure the I2CX interface */ #ifdef DEBUG_VERBOSE
return i2c_config(); printf("I2C bus reset: bus recovered\r\n");
#endif
/* 8. Reconfigure & enable peripheral */
i2c_config();
return I2C_RECOVERY_OK;
} }
/** /**
@@ -182,7 +228,7 @@ void i2c_scan(void) {
timeout = 0; timeout = 0;
while ((I2C_CTL0(I2C0) & I2C_CTL0_STOP) && (timeout < I2C_TIME_OUT)) while (i2c_flag_get(I2C0, I2C_FLAG_STPDET) && (timeout < I2C_TIME_OUT))
timeout++; timeout++;
} }
@@ -217,33 +263,22 @@ void i2c_scan(void) {
} }
} }
/*! i2c_result_t i2c_write_16bits(uint8_t slave_addr, uint8_t reg_addr, uint8_t data[2]) {
\brief write 16-bit data to I2C device with improved state machine
\param[in] slave_addr: 7-bit slave address
\param[in] reg_addr: register address
\param[in] data: pointer to 2-byte data array
\param[out] none
\retval i2c_status_t
*/
i2c_status_t i2c_write_16bits(uint8_t slave_addr, uint8_t reg_addr, const uint8_t data[2]) {
i2c_state_t state = I2C_STATE_START; i2c_state_t state = I2C_STATE_START;
uint16_t timeout = 0; uint16_t timeout = 0;
uint8_t data_index = 0;
uint8_t retry_count = 0; uint8_t retry_count = 0;
/* Parameter validation */ /* parameter validation */
if (data == NULL || slave_addr > 0x7F) { if (data == NULL || slave_addr > 0x7F) {
return I2C_STATUS_INVALID_PARAM; return I2C_RESULT_INVALID_PARAM;
} }
/* Enable acknowledge */
i2c_ack_config(I2C0, I2C_ACK_ENABLE);
while (retry_count < I2C_MAX_RETRY) { while (retry_count < I2C_MAX_RETRY) {
switch (state) { switch (state) {
case I2C_STATE_START: case I2C_STATE_START:
timeout = 0; timeout = 0;
/* Wait for bus to be idle */
/* wait for bus to be idle */
while (i2c_flag_get(I2C0, I2C_FLAG_I2CBSY) && (timeout < I2C_TIME_OUT)) { while (i2c_flag_get(I2C0, I2C_FLAG_I2CBSY) && (timeout < I2C_TIME_OUT)) {
timeout++; timeout++;
} }
@@ -252,15 +287,14 @@ i2c_status_t i2c_write_16bits(uint8_t slave_addr, uint8_t reg_addr, const uint8_
break; break;
} }
/* Send start condition */
i2c_start_on_bus(I2C0); i2c_start_on_bus(I2C0);
state = I2C_STATE_SEND_ADDRESS;
timeout = 0; timeout = 0;
state = I2C_STATE_SEND_ADDRESS;
break; break;
case I2C_STATE_SEND_ADDRESS: case I2C_STATE_SEND_ADDRESS:
/* Wait for start condition to be sent */ /* wait for start condition to be sent. SBSEND flag */
while ((!i2c_flag_get(I2C0, I2C_FLAG_SBSEND)) && (timeout < I2C_TIME_OUT)) { while((!i2c_flag_get(I2C0, I2C_FLAG_SBSEND)) && (timeout < I2C_TIME_OUT)) {
timeout++; timeout++;
} }
if (timeout >= I2C_TIME_OUT) { if (timeout >= I2C_TIME_OUT) {
@@ -268,30 +302,37 @@ i2c_status_t i2c_write_16bits(uint8_t slave_addr, uint8_t reg_addr, const uint8_
break; break;
} }
/* Send slave address with write bit */ /* send slave address */
i2c_master_addressing(I2C0, (slave_addr << 1), I2C_TRANSMITTER); i2c_master_addressing(I2C0, slave_addr << 1, I2C_TRANSMITTER);
state = I2C_STATE_CLEAR_ADDRESS;
timeout = 0; timeout = 0;
state = I2C_STATE_CLEAR_ADDRESS;
break; break;
case I2C_STATE_CLEAR_ADDRESS: case I2C_STATE_CLEAR_ADDRESS:
/* Wait for address to be acknowledged */ /* wait for address to be acknowledged.ADDSEND set means i2c slave sends ACK */
while ((!i2c_flag_get(I2C0, I2C_FLAG_ADDSEND)) && (timeout < I2C_TIME_OUT)) { while ((!i2c_flag_get(I2C0, I2C_FLAG_ADDSEND)) && (!i2c_flag_get(I2C0, I2C_FLAG_AERR)) && (timeout < I2C_TIME_OUT)) {
timeout++; timeout++;
} }
if (timeout >= I2C_TIME_OUT) { if (timeout >= I2C_TIME_OUT) {
state = I2C_STATE_ERROR; state = I2C_STATE_ERROR;
break; break;
} else if (i2c_flag_get(I2C0, I2C_FLAG_ADDSEND))
{
i2c_flag_clear(I2C0, I2C_FLAG_ADDSEND);
timeout =0;
state = I2C_STATE_TRANSMIT_REG;
break;
} else {
i2c_flag_clear(I2C0, I2C_FLAG_AERR);
timeout =0;
#ifdef DEBUG_VERBOES
printf("IIC write failed for Error Slave Address. \n");
#endif
return I2C_RESULT_NACK;
} }
/* Clear address flag */
i2c_flag_clear(I2C0, I2C_FLAG_ADDSEND);
state = I2C_STATE_TRANSMIT_REG;
timeout = 0;
break;
case I2C_STATE_TRANSMIT_REG: case I2C_STATE_TRANSMIT_REG:
/* Wait for transmit buffer to be empty */ /* wait until the transmit data buffer is empty */
while ((!i2c_flag_get(I2C0, I2C_FLAG_TBE)) && (timeout < I2C_TIME_OUT)) { while ((!i2c_flag_get(I2C0, I2C_FLAG_TBE)) && (timeout < I2C_TIME_OUT)) {
timeout++; timeout++;
} }
@@ -300,16 +341,15 @@ i2c_status_t i2c_write_16bits(uint8_t slave_addr, uint8_t reg_addr, const uint8_
break; break;
} }
/* Send register address */ /* send register address */
i2c_data_transmit(I2C0, reg_addr); i2c_data_transmit(I2C0, reg_addr);
state = I2C_STATE_TRANSMIT_DATA;
timeout = 0; timeout = 0;
data_index = 0; state = I2C_STATE_TRANSMIT_DATA;
break; break;
case I2C_STATE_TRANSMIT_DATA: case I2C_STATE_TRANSMIT_DATA:
/* Wait for byte transfer complete */ /* wait until the transmit data buffer is empty */
while ((!i2c_flag_get(I2C0, I2C_FLAG_BTC)) && (timeout < I2C_TIME_OUT)) { while ((!i2c_flag_get(I2C0, I2C_FLAG_TBE)) && (timeout < I2C_TIME_OUT)) {
timeout++; timeout++;
} }
if (timeout >= I2C_TIME_OUT) { if (timeout >= I2C_TIME_OUT) {
@@ -317,24 +357,49 @@ i2c_status_t i2c_write_16bits(uint8_t slave_addr, uint8_t reg_addr, const uint8_
break; break;
} }
/* Send data bytes */ /* send register MSB value */
if (data_index < 2) { i2c_data_transmit(I2C0, data[0]);
i2c_data_transmit(I2C0, data[data_index]);
data_index++;
timeout = 0;
/* Stay in this state until all data is sent */
} else {
/* All data sent, proceed to stop */
state = I2C_STATE_STOP;
timeout = 0; timeout = 0;
/* wait until the transmit data buffer is empty */
while ((!i2c_flag_get(I2C0, I2C_FLAG_TBE)) && (timeout < I2C_TIME_OUT)) {
timeout++;
} }
if (timeout >= I2C_TIME_OUT) {
state = I2C_STATE_ERROR;
break;
}
if (i2c_flag_get(I2C0, I2C_FLAG_AERR)) {
i2c_stop_on_bus(I2C0);
return I2C_RESULT_NACK;
} else if (i2c_flag_get(I2C0, I2C_FLAG_BERR) || i2c_flag_get(I2C0, I2C_FLAG_LOSTARB)) {
// 可按需清标志
i2c_stop_on_bus(I2C0);
return I2C_RESULT_ERROR;
}
/* send register LSB value */
i2c_data_transmit(I2C0, data[1]);
timeout = 0;
/* wait until BTC bit is set */
while (!i2c_flag_get(I2C0, I2C_FLAG_BTC) && (timeout < I2C_TIME_OUT)) {
timeout++;
}
if (timeout >= I2C_TIME_OUT) {
state = I2C_STATE_ERROR;
break;
}
state = I2C_STATE_STOP;
break; break;
case I2C_STATE_STOP: case I2C_STATE_STOP:
/* Send stop condition */ /* send a stop condition to I2C bus */
i2c_stop_on_bus(I2C0); i2c_stop_on_bus(I2C0);
/* Wait for stop condition to complete */ timeout = 0;
while ((I2C_CTL0(I2C0) & I2C_CTL0_STOP) && (timeout < I2C_TIME_OUT)) { while ((I2C_CTL0(I2C0) & I2C_CTL0_STOP) && (timeout < I2C_TIME_OUT)) {
timeout++; timeout++;
} }
@@ -343,80 +408,71 @@ i2c_status_t i2c_write_16bits(uint8_t slave_addr, uint8_t reg_addr, const uint8_
break; break;
} }
/* Success */ /* i2c master sends STOP signal successfully */
return I2C_STATUS_SUCCESS; /* success */
return I2C_RESULT_SUCCESS;
case I2C_STATE_ERROR: case I2C_STATE_ERROR:
/* Send stop condition to release bus */ /* send a stop condition to I2C bus */
i2c_stop_on_bus(I2C0); i2c_stop_on_bus(I2C0);
/* Increment retry counter */ timeout = 0;
retry_count++; while ((I2C_CTL0(I2C0) & I2C_CTL0_STOP) && (timeout < I2C_TIME_OUT)) {
if (retry_count >= I2C_MAX_RETRY) { timeout++;
#ifdef DEBUG_VERBOSE
// printf("I2C write failed after %d retries\r\n", I2C_MAX_RETRY);
const char* msg5_prefix = "I2C write failed after ";
for (uint8_t i = 0; msg5_prefix[i] != '\0'; i++) {
while (usart_flag_get(I2C_DEBUG_UART, USART_FLAG_TBE) == RESET) {}
usart_data_transmit(I2C_DEBUG_UART, msg5_prefix[i]);
} }
while (usart_flag_get(I2C_DEBUG_UART, USART_FLAG_TBE) == RESET) {} if (timeout >= I2C_TIME_OUT) {
usart_data_transmit(I2C_DEBUG_UART, '0' + I2C_MAX_RETRY); return I2C_RESULT_ERROR;
const char* msg5_suffix = " retries\r\n";
for (uint8_t i = 0; msg5_suffix[i] != '\0'; i++) {
while (usart_flag_get(I2C_DEBUG_UART, USART_FLAG_TBE) == RESET) {}
usart_data_transmit(I2C_DEBUG_UART, msg5_suffix[i]);
}
while (usart_flag_get(I2C_DEBUG_UART, USART_FLAG_TC) == RESET) {}
#endif
return I2C_STATUS_TIMEOUT;
} }
/* Reset state machine for retry */ i2c_flag_clear(I2C0, I2C_FLAG_AERR);
i2c_flag_clear(I2C0, I2C_FLAG_BERR);
i2c_flag_clear(I2C0, I2C_FLAG_LOSTARB);
retry_count ++;
if (retry_count >= I2C_MAX_RETRY)
{
#ifdef DEBUG_VERBOES
printf("IIC write failed after %d retries\n", I2C_MAX_RETRY);
#endif
return I2C_RESULT_ERROR;
}
/* reset state machine for retry */
state = I2C_STATE_START; state = I2C_STATE_START;
timeout = 0; timeout = 0;
data_index = 0;
/* Small delay before retry */ /* small delay before retry */
delay_10us(10); delay_10us(10);
break; break;
default: default:
state = I2C_STATE_ERROR; state = I2C_STATE_START;
break; break;
} }
} }
return I2C_RESULT_TIMEOUT;
return I2C_STATUS_TIMEOUT;
} }
/*! i2c_result_t i2c_read_16bits(uint8_t slave_addr, uint8_t reg_addr, uint8_t *data) {
\brief read 16-bit data from I2C device with improved state machine
\param[in] slave_addr: 7-bit slave address
\param[in] reg_addr: register address
\param[out] data: pointer to 2-byte data buffer
\retval i2c_status_t
*/
i2c_status_t i2c_read_16bits(uint8_t slave_addr, uint8_t reg_addr, uint8_t *data) {
i2c_state_t state = I2C_STATE_START; i2c_state_t state = I2C_STATE_START;
uint16_t timeout = 0; uint16_t timeout = 0;
uint8_t data_index = 0;
uint8_t retry_count = 0; uint8_t retry_count = 0;
bool write_phase = true; /* First phase: write register address */ bool write_phase = true;
/* Parameter validation */ // 参数检查:防止空指针和非法地址
if (data == NULL || slave_addr > 0x7F) { if (data == NULL || slave_addr > 0x7F) {
return I2C_STATUS_INVALID_PARAM; return I2C_RESULT_INVALID_PARAM;
} }
/* Enable acknowledge */ /* enable acknowledge */
i2c_ack_config(I2C0, I2C_ACK_ENABLE); i2c_ack_config(I2C0, I2C_ACK_ENABLE);
while (retry_count < I2C_MAX_RETRY) { while (retry_count < (uint8_t)I2C_MAX_RETRY) {
switch (state) { switch (state) {
case I2C_STATE_START: case I2C_STATE_START:
timeout = 0; timeout = 0;
/* Wait for bus to be idle */
// wait for bus to be idle
while (i2c_flag_get(I2C0, I2C_FLAG_I2CBSY) && (timeout < I2C_TIME_OUT)) { while (i2c_flag_get(I2C0, I2C_FLAG_I2CBSY) && (timeout < I2C_TIME_OUT)) {
timeout++; timeout++;
} }
@@ -425,19 +481,14 @@ i2c_status_t i2c_read_16bits(uint8_t slave_addr, uint8_t reg_addr, uint8_t *data
break; break;
} }
/* Configure ACK position for 2-byte read */ // send start condition
if (!write_phase) {
i2c_ackpos_config(I2C0, I2C_ACKPOS_NEXT);
}
/* Send start condition */
i2c_start_on_bus(I2C0); i2c_start_on_bus(I2C0);
state = I2C_STATE_SEND_ADDRESS; state = I2C_STATE_SEND_ADDRESS;
timeout = 0; timeout = 0;
break; break;
case I2C_STATE_SEND_ADDRESS: case I2C_STATE_SEND_ADDRESS:
/* Wait for start condition to be sent */ /* wait for start condition to be sent */
while ((!i2c_flag_get(I2C0, I2C_FLAG_SBSEND)) && (timeout < I2C_TIME_OUT)) { while ((!i2c_flag_get(I2C0, I2C_FLAG_SBSEND)) && (timeout < I2C_TIME_OUT)) {
timeout++; timeout++;
} }
@@ -446,22 +497,21 @@ i2c_status_t i2c_read_16bits(uint8_t slave_addr, uint8_t reg_addr, uint8_t *data
break; break;
} }
/* Send slave address */ // send slave address
if (write_phase) { if (write_phase) {
/* Write phase: send address with write bit */ /* write phase: send address with write bit */
i2c_master_addressing(I2C0, (slave_addr << 1), I2C_TRANSMITTER); i2c_master_addressing(I2C0, (slave_addr << 1), I2C_TRANSMITTER);
} else { } else {
/* Read phase: send address with read bit */ /* read phase: send address with read bit */
i2c_master_addressing(I2C0, (slave_addr << 1) | 0x01, I2C_RECEIVER); i2c_master_addressing(I2C0, (slave_addr << 1) | 0x01, I2C_RECEIVER);
/* Disable ACK for last byte */
i2c_ack_config(I2C0, I2C_ACK_DISABLE);
} }
state = I2C_STATE_CLEAR_ADDRESS; state = I2C_STATE_CLEAR_ADDRESS;
timeout = 0; timeout = 0;
break; break;
case I2C_STATE_CLEAR_ADDRESS: case I2C_STATE_CLEAR_ADDRESS:
/* Wait for address to be acknowledged */ /* wait for address to be acknowledged */
while ((!i2c_flag_get(I2C0, I2C_FLAG_ADDSEND)) && (timeout < I2C_TIME_OUT)) { while ((!i2c_flag_get(I2C0, I2C_FLAG_ADDSEND)) && (timeout < I2C_TIME_OUT)) {
timeout++; timeout++;
} }
@@ -470,24 +520,26 @@ i2c_status_t i2c_read_16bits(uint8_t slave_addr, uint8_t reg_addr, uint8_t *data
break; break;
} }
/* Clear address flag */ if (write_phase) {
/* clear address flag (write phase) */
i2c_flag_clear(I2C0, I2C_FLAG_ADDSEND);
state = I2C_STATE_TRANSMIT_DATA;
} else {
/* READ phase for 2 bytes: set POS=NEXT and disable ACK BEFORE clearing ADDR */
i2c_ackpos_config(I2C0, I2C_ACKPOS_NEXT);
i2c_ack_config(I2C0, I2C_ACK_DISABLE);
/* now clear address flag to release SCL and enter data phase */
i2c_flag_clear(I2C0, I2C_FLAG_ADDSEND); i2c_flag_clear(I2C0, I2C_FLAG_ADDSEND);
if (write_phase) {
state = I2C_STATE_TRANSMIT_REG;
} else {
/* For single byte read, send stop after clearing address */
if (data_index == 1) {
i2c_stop_on_bus(I2C0);
}
state = I2C_STATE_RECEIVE_DATA; state = I2C_STATE_RECEIVE_DATA;
data_index = 0;
} }
timeout = 0; timeout = 0;
break; break;
case I2C_STATE_TRANSMIT_REG: case I2C_STATE_TRANSMIT_DATA:
/* Wait for transmit buffer to be empty */ /* wait for transmit buffer to be empty */
while ((!i2c_flag_get(I2C0, I2C_FLAG_TBE)) && (timeout < I2C_TIME_OUT)) { while ((!i2c_flag_get(I2C0, I2C_FLAG_TBE)) && (timeout < I2C_TIME_OUT)) {
timeout++; timeout++;
} }
@@ -496,14 +548,14 @@ i2c_status_t i2c_read_16bits(uint8_t slave_addr, uint8_t reg_addr, uint8_t *data
break; break;
} }
/* Send register address */ /* send register address */
i2c_data_transmit(I2C0, reg_addr); i2c_data_transmit(I2C0, reg_addr);
state = I2C_STATE_RESTART; state = I2C_STATE_RESTART;
timeout = 0; timeout = 0;
break; break;
case I2C_STATE_RESTART: case I2C_STATE_RESTART:
/* Wait for byte transfer complete */ /* wait for byte transfer complete BTC: Bit Transfer Complete */
while ((!i2c_flag_get(I2C0, I2C_FLAG_BTC)) && (timeout < I2C_TIME_OUT)) { while ((!i2c_flag_get(I2C0, I2C_FLAG_BTC)) && (timeout < I2C_TIME_OUT)) {
timeout++; timeout++;
} }
@@ -512,16 +564,30 @@ i2c_status_t i2c_read_16bits(uint8_t slave_addr, uint8_t reg_addr, uint8_t *data
break; break;
} }
/* Switch to read phase */ /* generate repeated start condition */
i2c_start_on_bus(I2C0);
/* wait for repeated start condition to be sent */
timeout = 0;
while ((!i2c_flag_get(I2C0, I2C_FLAG_SBSEND)) && (timeout < I2C_TIME_OUT)) {
timeout++;
}
if (timeout >= I2C_TIME_OUT) {
state = I2C_STATE_ERROR;
break;
}
/* send slave address with read bit (R/W bit is set by library) */
i2c_master_addressing(I2C0, (slave_addr << 1), I2C_RECEIVER);
/* switch to read phase */
write_phase = false; write_phase = false;
state = I2C_STATE_START; state = I2C_STATE_CLEAR_ADDRESS;
timeout = 0; timeout = 0;
break; break;
case I2C_STATE_RECEIVE_DATA: case I2C_STATE_RECEIVE_DATA:
if (data_index < 2) { /* Wait for BTC (both bytes received) */
if (data_index == 1) {
/* Wait for BTC before sending stop for last byte */
while ((!i2c_flag_get(I2C0, I2C_FLAG_BTC)) && (timeout < I2C_TIME_OUT)) { while ((!i2c_flag_get(I2C0, I2C_FLAG_BTC)) && (timeout < I2C_TIME_OUT)) {
timeout++; timeout++;
} }
@@ -529,34 +595,19 @@ i2c_status_t i2c_read_16bits(uint8_t slave_addr, uint8_t reg_addr, uint8_t *data
state = I2C_STATE_ERROR; state = I2C_STATE_ERROR;
break; break;
} }
/* Send stop condition before reading last byte */
/* Send STOP before reading the last two bytes */
i2c_stop_on_bus(I2C0); i2c_stop_on_bus(I2C0);
}
/* Wait for receive buffer not empty */ /* Read the two bytes back-to-back */
while ((!i2c_flag_get(I2C0, I2C_FLAG_RBNE)) && (timeout < I2C_TIME_OUT)) { data[0] = i2c_data_receive(I2C0);
timeout++; data[1] = i2c_data_receive(I2C0);
}
if (timeout >= I2C_TIME_OUT) {
state = I2C_STATE_ERROR;
break;
}
/* Read data byte */
data[data_index] = i2c_data_receive(I2C0);
data_index++;
timeout = 0;
if (data_index >= 2) {
state = I2C_STATE_STOP; state = I2C_STATE_STOP;
}
} else {
state = I2C_STATE_STOP;
}
break; break;
case I2C_STATE_STOP: case I2C_STATE_STOP:
/* Wait for stop condition to complete */ /* wait for stop condition to complete */
while ((I2C_CTL0(I2C0) & I2C_CTL0_STOP) && (timeout < I2C_TIME_OUT)) { while ((I2C_CTL0(I2C0) & I2C_CTL0_STOP) && (timeout < I2C_TIME_OUT)) {
timeout++; timeout++;
} }
@@ -565,75 +616,62 @@ i2c_status_t i2c_read_16bits(uint8_t slave_addr, uint8_t reg_addr, uint8_t *data
break; break;
} }
/* Success */ /* i2c master sends STOP signal successfully */
return I2C_STATUS_SUCCESS; /* success */
return I2C_RESULT_SUCCESS;
case I2C_STATE_ERROR: case I2C_STATE_ERROR:
/* Send stop condition to release bus */ /* send stop condition to release bus */
i2c_stop_on_bus(I2C0); i2c_stop_on_bus(I2C0);
/* Increment retry counter */
retry_count++; retry_count++;
if (retry_count >= I2C_MAX_RETRY) { if (retry_count >= I2C_MAX_RETRY) {
#ifdef DEBUG_VERBOSE #ifdef DEBUG_VERBOES
// printf("I2C read failed after %d retries\r\n", I2C_MAX_RETRY); printf("IIC read failed after %d retries\n", I2C_RETRY_MAX);
const char* msg6_prefix = "I2C read failed after ";
for (uint8_t i = 0; msg6_prefix[i] != '\0'; i++) {
while (usart_flag_get(I2C_DEBUG_UART, USART_FLAG_TBE) == RESET) {}
usart_data_transmit(I2C_DEBUG_UART, msg6_prefix[i]);
}
while (usart_flag_get(I2C_DEBUG_UART, USART_FLAG_TBE) == RESET) {}
usart_data_transmit(I2C_DEBUG_UART, '0' + I2C_MAX_RETRY);
const char* msg6_suffix = " retries\r\n";
for (uint8_t i = 0; msg6_suffix[i] != '\0'; i++) {
while (usart_flag_get(I2C_DEBUG_UART, USART_FLAG_TBE) == RESET) {}
usart_data_transmit(I2C_DEBUG_UART, msg6_suffix[i]);
}
while (usart_flag_get(I2C_DEBUG_UART, USART_FLAG_TC) == RESET) {}
#endif #endif
return I2C_STATUS_TIMEOUT; return I2C_RESULT_ERROR;
} }
/* Reset state machine for retry */ /* reset state machine for retry */
state = I2C_STATE_START; state = I2C_STATE_START;
write_phase = true; write_phase = true;
timeout = 0; timeout = 0;
data_index = 0;
/* Small delay before retry */ /* small delay before retry */
delay_10us(10); delay_10us(10);
break; break;
default: default:
state = I2C_STATE_ERROR; state = I2C_STATE_START;
break; break;
} }
} }
return I2C_RESULT_TIMEOUT;
return I2C_STATUS_TIMEOUT;
} }
#ifdef DEBUG_VERBOSE
/*! /*!
\brief get status string for debugging \brief get status string for debugging
\param[in] status: i2c_status_t value \param[in] status: i2c_status_t value
\param[out] none \param[out] none
\retval const char* status string \retval const char* status string
*/ */
const char* i2c_get_status_string(i2c_status_t status) { const char* i2c_get_status_string(i2c_result_t status) {
switch (status) { switch (status) {
case I2C_STATUS_SUCCESS: case I2C_RESULT_SUCCESS:
return "SUCCESS"; return "SUCCESS";
case I2C_STATUS_TIMEOUT: case I2C_RESULT_TIMEOUT:
return "TIMEOUT"; return "TIMEOUT";
case I2C_STATUS_NACK: case I2C_RESULT_NACK:
return "NACK"; return "NACK";
case I2C_STATUS_BUS_BUSY: case I2C_RESULT_BUS_BUSY:
return "BUS_BUSY"; return "BUS_BUSY";
case I2C_STATUS_ERROR: case I2C_RESULT_ERROR:
return "ERROR"; return "ERROR";
case I2C_STATUS_INVALID_PARAM: case I2C_RESULT_INVALID_PARAM:
return "INVALID_PARAM"; return "INVALID_PARAM";
default: default:
return "UNKNOWN"; return "UNKNOWN";
} }
} }
#endif

View File

@@ -41,8 +41,6 @@ OF SUCH DAMAGE.
#include "i2c.h" #include "i2c.h"
#include "board_config.h" #include "board_config.h"
bool g_status_switch = false;
/*! /*!
\brief main function \brief main function
\param[in] none \param[in] none
@@ -59,7 +57,7 @@ int main(void)
led_init(); led_init();
#ifdef DEBUG_VERBOSE #ifdef DEBUG_VERBOSE
char hello_world[] = {"Hello World!"}; char hello_world[] = {"Hello World!\r\n"};
for (uint8_t i = 0; i < sizeof(hello_world); i++) for (uint8_t i = 0; i < sizeof(hello_world); i++)
{ {
@@ -68,21 +66,21 @@ int main(void)
} }
while (usart_flag_get(RS485_PHY, USART_FLAG_TC) == RESET) {} while (usart_flag_get(RS485_PHY, USART_FLAG_TC) == RESET) {}
#endif #endif
i2c_config(); i2c_config();
// i2c_bus_reset();
#ifdef DEBUG_VERBOSE #ifdef DEBUG_VERBOSE
i2c_scan(); i2c_scan();
i2c_bus_reset();
#endif #endif
while(1){ while(1){
command_process(); command_process();
delay_ms(100); delay_ms(10);
} }
} }

View File

@@ -59,13 +59,13 @@ void soft_i2c_start(void) {
\retval none \retval none
*/ */
void soft_i2c_stop(void) { void soft_i2c_stop(void) {
// sda_out(); I2C_SCL_LOW(); // 确保时钟为低
I2C_SCL_LOW(); I2C_SDA_LOW(); // 拉低数据线
I2C_SDA_LOW();
soft_i2c_delay(); soft_i2c_delay();
I2C_SCL_HIGH(); I2C_SCL_HIGH(); // 拉高时钟
soft_i2c_delay(); soft_i2c_delay();
I2C_SDA_HIGH(); I2C_SDA_HIGH(); // 在时钟高电平时拉高数据线产生停止条件
soft_i2c_delay(); // 添加缺失的延时
} }
/*! /*!
@@ -108,12 +108,13 @@ void soft_i2c_send_nack(void) {
\retval 0: ACK received, 1: ACK not received \retval 0: ACK received, 1: ACK not received
*/ */
uint8_t soft_i2c_wait_ack(void) { uint8_t soft_i2c_wait_ack(void) {
I2C_SDA_HIGH(); I2C_SDA_HIGH(); // 释放SDA线让从设备控制
soft_i2c_delay(); soft_i2c_delay();
I2C_SCL_HIGH(); I2C_SCL_HIGH(); // 拉高时钟
soft_i2c_delay(); soft_i2c_delay();
uint8_t ack = !I2C_SDA_READ(); uint8_t ack = !I2C_SDA_READ(); // 读取ACK信号低电平为ACK
I2C_SCL_LOW(); I2C_SCL_LOW(); // 拉低时钟
soft_i2c_delay(); // 添加缺失的延时
return ack; return ack;
} }
@@ -168,8 +169,13 @@ uint8_t soft_i2c_receive_byte(uint8_t ack) {
} }
uint8_t soft_i2c_write_16bits(uint8_t slave_addr, uint8_t reg_addr, uint8_t data[2]) { uint8_t soft_i2c_write_16bits(uint8_t slave_addr, uint8_t reg_addr, uint8_t data[2]) {
/* 参数验证 */
if (data == NULL || slave_addr > 0x7F) {
return SOFT_I2C_FAIL;
}
soft_i2c_start(); soft_i2c_start();
soft_i2c_send_byte(slave_addr); soft_i2c_send_byte(slave_addr << 1); // 修复左移1位添加写位
if (!soft_i2c_wait_ack()) { if (!soft_i2c_wait_ack()) {
soft_i2c_stop(); soft_i2c_stop();
return SOFT_I2C_FAIL; return SOFT_I2C_FAIL;
@@ -185,15 +191,24 @@ uint8_t soft_i2c_write_16bits(uint8_t slave_addr, uint8_t reg_addr, uint8_t data
return SOFT_I2C_FAIL; return SOFT_I2C_FAIL;
} }
soft_i2c_send_byte(data[1]); soft_i2c_send_byte(data[1]);
if (soft_i2c_wait_ack()){} if (!soft_i2c_wait_ack()) { // 修复:添加错误处理
soft_i2c_stop();
return SOFT_I2C_FAIL;
}
soft_i2c_stop(); soft_i2c_stop();
return SOFT_I2C_OK; return SOFT_I2C_OK;
} }
uint8_t soft_i2c_read_16bits(uint8_t slave_addr, uint8_t reg_addr, uint8_t *data) uint8_t soft_i2c_read_16bits(uint8_t slave_addr, uint8_t reg_addr, uint8_t *data)
{ {
/* 参数验证 */
if (data == NULL || slave_addr > 0x7F) {
return SOFT_I2C_FAIL;
}
/* 写阶段:发送寄存器地址 */
soft_i2c_start(); soft_i2c_start();
soft_i2c_send_byte(slave_addr); soft_i2c_send_byte(slave_addr << 1); // 修复左移1位写操作
if (!soft_i2c_wait_ack()) { if (!soft_i2c_wait_ack()) {
soft_i2c_stop(); soft_i2c_stop();
return SOFT_I2C_FAIL; return SOFT_I2C_FAIL;
@@ -203,15 +218,17 @@ uint8_t soft_i2c_read_16bits(uint8_t slave_addr, uint8_t reg_addr, uint8_t *data
soft_i2c_stop(); soft_i2c_stop();
return SOFT_I2C_FAIL; return SOFT_I2C_FAIL;
} }
soft_i2c_start();
soft_i2c_send_byte(slave_addr | 0x01); /* 读阶段:重新开始并读取数据 */
soft_i2c_start(); // 重新开始
soft_i2c_send_byte((slave_addr << 1) | 0x01); // 修复:正确的读地址
if (!soft_i2c_wait_ack()) { if (!soft_i2c_wait_ack()) {
soft_i2c_stop(); soft_i2c_stop();
return SOFT_I2C_FAIL; return SOFT_I2C_FAIL;
} }
soft_i2c_delay(); soft_i2c_delay();
data[0] = soft_i2c_receive_byte(1); data[0] = soft_i2c_receive_byte(1); // 第一个字节发送ACK
data[1] = soft_i2c_receive_byte(0); data[1] = soft_i2c_receive_byte(0); // 最后一个字节发送NACK
soft_i2c_stop(); soft_i2c_stop();
return SOFT_I2C_OK; return SOFT_I2C_OK;
} }

View File

@@ -7,8 +7,8 @@ set(VERSION "V${VERSION_MAJOR}.${VERSION_MINOR}.${VERSION_PATCH}")
string(TIMESTAMP BUILD_DATE "%Y-%m-%d") string(TIMESTAMP BUILD_DATE "%Y-%m-%d")
# 编译条件如IIC类型等 # 编译条件如IIC类型等
set(IIC_TYPE "AutoDetectDriveCurrent") # set(IIC_TYPE "AutoDetectDriveCurrent")
# set(IIC_TYPE "HW-IIC") set(IIC_TYPE "HW-IIC")
# 其它自定义宏 # 其它自定义宏
add_definitions(-DIIC_TYPE=${IIC_TYPE}) add_definitions(-DIIC_TYPE=${IIC_TYPE})