AI工具写的环形缓冲区

This commit is contained in:
2025-08-11 20:11:46 +08:00
parent c6c90800d4
commit 4a488429bf
13 changed files with 470 additions and 154 deletions

197
Src/command.c Normal file
View File

@@ -0,0 +1,197 @@
#include "command.h"
#include "uart_ring_buffer.h"
#include "led.h"
#include <stdint.h>
#include <stdbool.h>
#include <stdio.h>
/*
协议说明(依据用户提供的旧实现):
Host -> Device 帧格式:
[0] HEADER = 0xD5
[1] BOARD_TYPE = 0x03
[2] LEN = 数据区字节数
[3..(3+LEN-1)] 数据
[last] CRC = 从下标 1 到 (last-1) 的累加和低 8 位
数据示例(两字节命令):"M1" / "M2" / "M3"
Device -> Host 应答:复用 0xB5 开头:
[0] 0xB5, [1] TYPE(例如 0xF0=OK, 0xF1..=错误类), [2] LEN, [3..] payload, [last] CRC同上规则
*/
// 旧工程中的外部状态与复位函数(本工程暂不直接使用,按要求保留为注释):
// extern bool g_statusSwitch; // 来自其他业务模块
// void fwdgt_reset_mcu(void); // 看门狗复位
#define PROTOCOL_PACKAGE_HEADER 0xD5
#define PROTOCOL_BOARD_TYPE 0x03
#define PROTOCOL_PACKAGE_LENGTH 0x02
/* 可选的应答类型定义(与示例保持一致,可按需扩展) */
#define RESP_HEADER 0xB5
#define RESP_TYPE_OK 0xF0
#define RESP_TYPE_CRC_ERR 0xF1
#define RESP_TYPE_HEADER_ERR 0xF2
#define RESP_TYPE_TYPE_ERR 0xF3
#define RESP_TYPE_LEN_ERR 0xF4
#define CMD_BUF_SIZE 64
/* 计算 CRC从索引 1 累加到 len-2不含 HEADER 与 CRC 字节) */
static uint8_t proto_sum_crc(const uint8_t *data, uint8_t len)
{
uint8_t crc = 0;
if (len < 3) return 0; // 最少应为 header + X + crc
for (uint8_t i = 1; i < (uint8_t)(len - 1); i++) {
crc += data[i];
}
return crc;
}
/* 发送应答header(0xB5), type, len, payload[len], crc */
static void send_response(uint8_t type, const uint8_t *payload, uint8_t len)
{
uint8_t buf_len = (uint8_t)(3 + len + 1);
uint8_t buf[16]; // 简单场景足够,必要时可增大
if (buf_len > sizeof(buf)) return; // 防御
buf[0] = RESP_HEADER;
buf[1] = type;
buf[2] = len;
for (uint8_t i = 0; i < len; i++) buf[3 + i] = payload ? payload[i] : 0;
buf[buf_len - 1] = proto_sum_crc(buf, buf_len);
for (uint8_t i = 0; i < buf_len; i++) {
printf("%c", buf[i]);
}
}
void handle_command(const uint8_t *cmd, uint8_t len) {
// 期望帧D5 03 02 'M' '1' CRC或 'M2'/'M3'
if (len < 6) return; // 最小长度 3+2+1
uint8_t payload_len = cmd[2];
if (payload_len < 2) return; // 我们期望 2 字节命令
char c0 = (char)cmd[3];
char c1 = (char)cmd[4];
if (c0 == 'M' && c1 == '1') {
led_on();
// g_statusSwitch = true; // 保留但注释:切换业务状态
// OK: 返回 "ok"
const uint8_t ok[] = { 'o', 'k' };
send_response(RESP_TYPE_OK, ok, sizeof(ok));
} else if (c0 == 'M' && c1 == '2') {
led_off();
// g_statusSwitch = false; // 保留但注释:切换业务状态
const uint8_t ok[] = { 'o', 'k' };
send_response(RESP_TYPE_OK, ok, sizeof(ok));
} else if (c0 == 'M' && c1 == '3') {
const uint8_t ok[] = { 'o', 'k' };
send_response(RESP_TYPE_OK, ok, sizeof(ok));
// fwdgt_reset_mcu(); // 保留但注释:触发 MCU 复位(依赖外部实现)
// 或NVIC_SystemReset();(需包含 CMSIS 头)
} else {
const uint8_t err[] = { 'e','r','r', 0x3C };
send_response(RESP_TYPE_HEADER_ERR, err, sizeof(err));
}
}
void command_process(void) {
static uint8_t cmd_buf[CMD_BUF_SIZE];
static uint8_t cmd_len = 0;
static uint8_t expected_total = 0; // 0 表示尚未确定总长度
while (uart_rx_available() > 0) {
int byte = uart_rx_get();
if (byte < 0) break;
if (cmd_len == 0) {
if ((uint8_t)byte == PROTOCOL_PACKAGE_HEADER) {
cmd_buf[cmd_len++] = (uint8_t)byte;
expected_total = 0; // 等待进一步字段以确定长度
} else {
// 丢弃非起始字节
}
continue;
}
// 累积后续字节
cmd_buf[cmd_len++] = (uint8_t)byte;
// 当到达长度字段(索引 2确定总长度3 + LEN + 1
if (cmd_len == 3) {
uint8_t payload_len = cmd_buf[2];
expected_total = (uint8_t)(3 + payload_len + 1);
if (expected_total > CMD_BUF_SIZE) {
// 异常:长度超界,复位状态机
cmd_len = 0;
expected_total = 0;
}
continue;
}
if (expected_total > 0 && cmd_len == expected_total) {
// 到帧尾,进行各项校验
bool ok = true;
if (cmd_buf[0] != PROTOCOL_PACKAGE_HEADER) {
const uint8_t err[] = { 'e','r','r', 0x3E }; // header 错
send_response(RESP_TYPE_HEADER_ERR, err, sizeof(err));
ok = false;
}
if (ok && cmd_buf[1] != PROTOCOL_BOARD_TYPE) {
const uint8_t err[] = { 'e','r','r', 0x3F }; // type 错
send_response(RESP_TYPE_TYPE_ERR, err, sizeof(err));
ok = false;
}
if (ok && cmd_buf[2] != PROTOCOL_PACKAGE_LENGTH) {
const uint8_t err[] = { 'e','r','r', 0x40 }; // length 错
send_response(RESP_TYPE_LEN_ERR, err, sizeof(err));
ok = false;
}
if (ok) {
uint8_t crc_calc = proto_sum_crc(cmd_buf, expected_total);
uint8_t crc_recv = cmd_buf[expected_total - 1];
if (crc_calc != crc_recv) {
const uint8_t err[] = { 'e','r','r', 0x3D }; // crc 错
send_response(RESP_TYPE_CRC_ERR, err, sizeof(err));
ok = false;
}
}
if (ok) {
handle_command(cmd_buf, expected_total);
}
// 复位,等待下一帧
cmd_len = 0;
expected_total = 0;
}
if (cmd_len >= CMD_BUF_SIZE) {
// 防御:缓冲溢出,复位状态机
cmd_len = 0;
expected_total = 0;
}
}
}
// -----------------------------------------------------------------------------
// 下列为与传感器相关的报告函数占位,按要求“保留但注释掉”。
// 原工程中依赖 ldc1612/tmp112a 读数并通过 0xB5 帧打印上报。
// 若后续集成这些传感器驱动,可解注释并补齐实现。
//
// static uint8_t package_header[3] = {0xB5, 0xF0, 0x04};
// static uint8_t package_data[4] = {0};
//
// void eddy_current_value_report(void) {
// uint32_t eddy_current_value_uint32 = ldc1612_get_raw_channel_result(CHANNEL_0);
// (void)eddy_current_value_uint32;
// // 按原协议组帧并 printf 发送B5 F0 04 [data3..data0] CRC
// }
//
// void tempture_value_report(void) {
// uint32_t temperature_uint32 = tmp112a_get_raw_channel_result();
// (void)temperature_uint32;
// // 按原协议组帧并 printf 发送B5 F0 04 [data3..data0] CRC
// }